

แรงดันตกชั่วขณะเป็นปัญหาคุณภาพไฟฟ้าที่พบมากและก่อให้เกิดความเสียหายต่อระบบไฟฟ้าได้มากที่สุด ที่ผ่านมา มีวิธีการหาขนาดของแรงดันหลายวิธี แต่มีวิธีที่นิยมใช้ที่สุด 3 วิธี ได้แก่ วิธีหาค่าแรงดันอาร์เอ็มเอส วิธีการแยกองค์ประกอบของแรงดัน และวิธีการหาค่าขององค์ของแรงดัน

งานวิจัยนำเสนอวิธีการคำนวณ จุดเริ่มต้น จุดสิ้นสุดและขนาดของแรงดันตกชั่วขณะโดยการประยุกต์ใช้ทฤษฎีการแปลงเวฟเล็ตและทำการเปรียบเทียบผลการคำนวณที่ได้จากการวิธีที่นำเสนอ กับวิธีที่นิยมใช้ 3 วิธี ได้แก่ วิธีหาค่าแรงดันอาร์เอ็มเอส วิธีการแยกองค์ประกอบของแรงดัน และ วิธีการหาค่าขององค์ของแรงดัน โดยใช้สัญญาณทดสอบจากแหล่งที่มา 3 ทางคือ การสร้างแรงดันตกชั่วขณะจากโปรแกรม PSCAD/EMTDC สัญญาณทดสอบที่ได้จากการถ่ายทอดทางด้านคุณภาพไฟฟ้า ของ IEEE1159.2 และสัญญาณทดสอบที่ได้จากการ Fault Recorder ของการไฟฟ้าส่วนภูมิภาค วิธีการที่กล่าวถึงทั้งหมดจะถูกนำมาจำลองการทำงานในโปรแกรม MATLAB ผลปรากฏว่า วิธีการแปลงเวฟเล็ตมีประสิทธิภาพเหนือวิธีการอื่นๆ ในการวิเคราะห์แรงดันตกชั่วขณะ

Abstract

192367

Voltage sag is a power quality problem. The voltage magnitude can be determined in a number of ways. Most popular methods are Root mean square, Orthogonal and Peak voltage method.

The thesis presents a wavelet-based technique to determine the beginning, the end and the magnitude of voltage sag. The results show the comparison between the wavelet based technique and the most popular methods such as Root mean square, Orthogonal component and Peak value magnitude evaluation. The test signals obtain from three sources. Firstly, the signals was simulated from a 115/22 kV substation of Provincial Electricity Authority (PEA) in Thailand by using PSCAD/EMTDC program. Secondly, the real signals were captured at a PEA's 115/22 kV substation. Finally, the signals were obtained from IEEE Power Quality Event Characterization Working Group (P1159.2). All techniques mentioned were then tested in Matlab program. The results have shown that the proposed wavelet-based technique is superior to other conventional techniques.