

วิทยานิพนธ์ฉบับนี้ ได้นำเสนอวิธีการปรับปรุงขั้นตอนวิธีการค้นหาเส้นทางเชิงภูมิศาสตร์ (Geographic Routing Algorithm) ด้วยข่ายงานระบบประสาท (Neural Network) ให้สามารถสร้างเส้นทางสำหรับส่งข้อมูลในเครือข่ายเซ็นเซอร์ไร้สาย โดยคำนึงถึงประสิทธิภาพในการรับข้อมูลได้ที่ความผิดพลาดจากการหาตำแหน่งของเซ็นเซอร์โหนดที่ระยะ ± 10 เมตร ผลจากการที่วิจัยพบว่า เมื่อเครือข่ายมีขนาดใหญ่และมีความหนาแน่นของโหนดข้างเคียงที่ค่อนข้างน้อยประมาณ 1-2 โหนด จะส่งผลให้ประสิทธิภาพในการทำงานของขั้นตอนวิธีการค้นหาเส้นทางเชิงภูมิศาสตร์ทางลดลง เนื่องจากเกิดความล้มเหลวในการค้นหาเส้นทางที่จะส่งต่อข้อมูลและส่งผลกระทบต่อการใช้พลังงานในการส่งข้อมูล และเมื่อนำข่ายงานระบบประสาทมาปรับปรุงขั้นตอนวิธีการค้นหาเส้นทางเชิงภูมิศาสตร์ที่ทำงานบนค่าความผิดพลาดของตำแหน่งของโหนดที่ระยะ ± 10 เมตรแล้ว สามารถช่วยทำงานค่าผิดพลาดของตำแหน่งของโหนดที่เกิดขึ้นได้ ทำให้ประสิทธิภาพในการทำงานเพิ่มขึ้น คือ มีประสิทธิภาพในการทำงานไม่แตกต่างจากขั้นตอนวิธีการค้นหาเส้นทางเชิงภูมิศาสตร์ที่ไม่มีความผิดพลาดของตำแหน่งของโหนดผลที่ได้จากการที่วิจัยจึงเหมาะสมสำหรับนำมาประยุกต์ใช้กับเครือข่ายเซ็นเซอร์ไร้สายเพื่อให้สามารถใช้พลังงานในการส่งข้อมูลได้อย่างมีประสิทธิภาพเมื่อเกิดความผิดพลาดจากการหาตำแหน่งของเซ็นเซอร์โหนดที่ระยะ ± 10 เมตร

Abstract

192372

Several routing algorithms that exploit geographic information have been proposed to achieve scalability for wireless ad hoc networks such as geographical based routing algorithms. These algorithms refer to nodes by their locations, not a network address, and use those coordinates to route greedily, when possible, towards a destination; hence, the location information is significantly important. In this thesis, we investigate and evaluate the performance of a geographical routing algorithm, Greedy Perimeter Stateless Routing (GPSR). The investigation concentrates on the effect of the location information error on the performance of the GPSR routing protocols. We have found that with the uniform error of 5-25 meter, typical for GPS devices, the delivery ratio is degraded up to 70% in a large network compared to the best case in using classical routing algorithms. Additionally, we proposed a method to mitigate the location error problem using the Neural Network. The NN model is utilized to train and predict the location error at the scale of ± 10 meters. The results have shown that the performance GPSR routing with location errors can be improved such that the location errors only have slight effect to the routing performance. Therefore, the NN model could be one of the mitigation techniques to improve the geographical-based routing protocol performance.