

ระบบผลิตก๊าซเชื้อเพลิงจากขยะมูลฝอยเป็นแนวทางหนึ่งของการหาพลังงานทดแทนการใช้พลังงานจากน้ำมันเชื้อเพลิง หลักการของระบบผลิตก๊าซเชื้อเพลิงคือการเปลี่ยนเชื้อเพลิงเป็นให้กลไยเป็นก๊าซเชื้อเพลิง โดยงานวิจัยนี้ใช้เครื่องผลิตก๊าซเชื้อเพลิงแบบไอลองขนาดการทำงานในระดับห้องปฏิบัติการและใช้เศษไม้เป็นเชื้อเพลิงตัวอย่างในการทดสอบ จากการทำการทดลองและการทำแบบจำลองเชิงจลนพลศาสตร์ที่สภาวะอัตราการป้อนอากาศเชิงปริมาตรต่างๆ พบว่าได้ผลสอดคล้องกันคือ ก๊าซผลิตก๊าซที่มีปริมาณองค์ประกอบของก๊าซเชื้อเพลิงสูงสุดที่สภาวะขั้ตตราการป้อนอากาศเชิงปริมาตรเท่ากับ 350 ลิตร/นาที โดยจากการทดลองได้ก๊าซคาร์บอนมอนอกไซด์ 19.99%, ก๊าซไฮโดรเจน 10.34% และก๊าซมีเทน 1.73% และจากผลการทำการทดลองได้ก๊าซคาร์บอนมอนอกไซด์ 21.50%, ก๊าซไฮโดรเจน 8.67% และก๊าซมีเทน 0.92% ซึ่งจากการทำแบบจำลองเชิงจลนพลศาสตร์สามารถหาความสัมพันธ์ระหว่างอัตราการเกิดปฏิกิริยาเคมีกับการเปลี่ยนแปลงอุณหภูมิกายในโซนรีดักชันได้ ซึ่งแสดงได้ว่าการเกิดปฏิกิริยาดูดความร้อนระหว่างก๊าซกับต่านชาร์กายในโซนรีดักชันถูกกำหนดโดยปฏิกิริยา บูดูอาร์ดเป็นปฏิกิริยาหลักที่มีผลต่อปริมาณองค์ประกอบก๊าซเชื้อเพลิงที่ผลิตได้มากที่สุด โดยพบว่าได้อัตราการเกิดปฏิกิริยาเคมีสูงสุดที่สภาวะอัตราการป้อนอากาศเชิงปริมาตรเท่ากับ 350 ลิตร/นาที ดังกล่าว ซึ่งเป็นผลจากการมีช่วงอุณหภูมิกายในโซนรีดักชันที่เหมาะสม

Abstract

192373

Municipal-solid-waste gasification, which converts solid materials into fuel gas by thermochemical reactions, is regarded as one of renewable energy sources. In this study, experiments were performed in a laboratory-scale downdraft gasifier using wood chips as fuel at various input air volumetric flowrates. A mathematical model was also developed to simulate the reduction zone of the gasifier. It is found that the model predicted results were in reasonable agreement with the experimental results in term of the product gas composition and both model prediction and the experiment give the highest amounts of the interested product gases (CO , H_2 and CH_4) at the input air flowrate of 350 L/min. The product gas from the experiment at 350 L/min contained 19.99 % CO , 10.34 % H_2 and 1.73 % CH_4 , while the product gas from the model prediction contained 21.05 % CO , 8.67 % H_2 and 0.92 % CH_4 . The relationships between the rate of governing chemical reactions and the variation of temperature within the reduction zone obtained from the model calculation showed that the boudouard reaction was the principle reaction controlling the product gas composition. The reaction rate calculation at the optimum input air volumetric flowrate showed that the rate of the boudouard reaction was the highest, which may be explained by the range of temperature in the reduction zone favored by the boudouard reaction.