

ไทยเนี่ยมไดออกไซด์ฟอโตคatalisต์ในรูปผลึกอนาเทส สามารถถ่ายสารน้ำพิษในน้ำ และอากาศโดยใช้แสงได้ แต่ไม่ประสิทธิภาพในการรับประจุกิริยาด้วยแสงจำกัดในช่วงของแสงชูว์ จึงได้สามารถนำมารับช่วงของการคุณภาพแสงให้อยู่ในช่วงวิสิบิลซึ่งเป็นองค์ประกอบหลักของแสงอาทิตย์ โดยการปรับแต่งพื้นผิวของไทยเนี่ยมไดออกไซด์ด้วยวิธี doping ด้วยอะตอนของธาตุชัลเฟอร์จากไทโอยูเรีย โดยใช้อัตราส่วนโดยไม่ระบุว่า ไทยเนี่ยมไอโซไฟฟ์รอกไดออกไซด์กับไทโอยูเรียเป็น 1:4 และเพาเวอร์ได้รับจากภาคปกติที่อุณหภูมิ 400, 500 และ 600 องศาเซลเซียส งานนี้ นำมาพัฒนาประสิทธิภาพของไทยเนี่ยมไดออกไซด์คatalisต์โดยใช้การคุณชั้นด้วยไออกอนของโลหะทรายสีชน ไดแก่ Fe^{3+} , Cr^{3+} และ V^{3+} หลังจากนั้นนำผลิตภัณฑ์ที่เตรียมได้มาวิเคราะห์ด้วย เทคนิค Brunauer-Emmett-Teller (BET), X-ray Powder Diffraction (XRD) และ UV-Visible Spectroscopy (UV-Vis) พบว่าอะตอนของธาตุชัลเฟอร์สามารถเลื่อนแอบการคุณภาพแสงของไทยเนี่ยมไดออกไซด์ให้เข้ามาอยู่ในช่วงวิสิบิลได้ดีขึ้น นอกจากนี้ยังพบอีกว่าอุณหภูมิที่ใช้ในการเผาที่สูงขึ้นทำให้การคุณภาพแสงในช่วงวิสิบิลมีประสิทธิภาพมากขึ้น และคatalisต์ที่เตรียมได้ถูกนำมาทดสอบประสิทธิภาพในการถ่ายสารอินทรีย์โดยใช้เมทิลีนบลูเป็นสารทดสอบ พบว่า S -doped TiO_2 ที่ปรับแต่งพื้นด้วย V^{3+} 2.84 เปอร์เซ็นต์ สามารถทำให้เกิดการถ่ายตัวของสารละลายน้ำได้สูงสุด 95.25 เปอร์เซ็นต์

Abstract

192374

Titanium dioxide photocatalysts having anatase phase are a promising substrate for photodegradation of pollutants in water and air. However, their photocatalytic activities show only under ultraviolet (UV) light. In order to extend its absorption into the visible region the surface of titanium dioxide was modified with S atoms from thiourea with the molar ratio of titanium isopropoxide to thiourea of 1:4. The powder was then calcined at 400, 500 and 600 °C under aerated conditions. The activity of titanium dioxide catalysts was further improved by doping the powder with transition metal ions such as Fe^{3+} , Cr^{3+} and V^{3+} . The finished catalysts were characterized by various techniques such as Brunauer-Emmett-Teller (BET), X-ray Powder Diffraction (XRD) and UV-Visible Spectroscopy (UV-Vis). Doping the powder with S atoms was found to successfully shift the absorption band of TiO_2 into the visible region. It was also found that the absorptivity could be enhanced by increasing the calcining temperature of the TiO_2 powder. The formulated catalysts were tested using methylene blue degradation as a probe reaction. S -doped TiO_2 modified with 2.84% V^{3+} was found to exhibit the highest degradation of methylene blue of 95.25%