CHAPTER III

THE PROPOSED FRAMEWORKS

In this chapter, the two frameworks were proposed for improving the performance of
face hallucination. In Section 3.1, the first framework, Color Face Hallucination with Linear
Regression Model in MPCA, take the advantage of the MPCA. The second framework, Color

Face Super-Resolution Based on Tensor Patches Method, was introduced in Section 3.2.

3.1 Color Face Hallucination with Linear Regression Model in MPCA

The goal of this part is to propose a novel hallucination reconstruction, using the

.....

XL = {X"},_1. x and K is the number of training image. The training color face images
can be defined as X* € R"@R™2® R” and X! € R”"®R”® R”* which are the HR color
face image and LR color face image, respectively.

In this paper, we propose our method in many color models such as RGB, YCbCr,
HSV and CIELAB. For example, the training image sets X and X} can be described in
RGB model as X € R1*2X3 and X! € R”*/2*?_ In addition, the index I, X I> x 3 is an
array of color pixels, where each color pixel is a triplet corresponding to the red, green, and
blue components of an RGB image.

Following standard multilinear algebra, any tensor can be expressed as the product

~h(1)T ~h(2)T ~h(3)T
Wom B T seale! gl G.1)

and
! I ~1(1)T ~1(2)T ~1(3)T
Y, =4&; x, U xo U x3 U (3.2)

where V! € R @R”® R and Y} € R QR ®@ R?, with (P, < I1, P, < I and P3 < 3)
as the index of HR training set and (Q; < J1,Q2 < Jo and Q3 < 3) as the index of LR
training set. The tensor ); can capture most of the variations observed in the original tensor
objects, assuming that these variations are measured by the total scatter. Therefore, two
sets of MPCA subspace projection are obtained, which are Y = [y*_ |, and Y} = [y} Ji
respectively. In addition, we use [y, ] to represent a tensor with y, ; ; as its (, s, t)-th entry.

One can see that if the sets of INJ( ), U 2), I~J(3) are disjoint sets of orthonormal vectors
then the correlation between the decomposition coefficients can be suppressed. From the
model Y* = f()}). When a generative model is used, f is actually a probability. Thus we
can consider the conditional probability P(Y"|V!). When a new testing color face image
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(LR) X' is provided, the HR MPCA subspace projection is given by:
V" = argmax P(Y|)"). (3.3)
y

The HR color face image X" can be reconstructed by back-projection from the MPCA
subspace into the image tensor space as

Sy, "0 SN o i (3.4)

Because each individual coefficient can be estimated separately, we have

:l?T}'l,s,t = argmax P(yr,s,t|yl), (35)

yr,s._t
From the assumption of low-correlation between the coefficients in J*, we can simplify this

probability in (3.5) as

P(yr,s,t|yl)zp(yr,s,t|yi,l,l)-P(yr,S,t|yé21,Q2,Q3)- (3.6)
We can also rewrite [y, ,] into a vector form as

Q1Q2Q3
P(y,|V") ~ H P(y.|y,)- 3.7)

We use Gaussian to model the probability in (3.7) as:

(yr — wy, yl )2
P(y:lyp) ~ cexp{————"—=}, (38)
where ¢ is a constant. This Gaussian model evaluates the weighted distance between the
projection coefficients. Equation (3.7) can be rewritten as

Q1Q2Q3
r — Wr y)
P vl bl 39)

The Maximum Likelihood estimate of (3.9) is given by

§" = argmax logP(y,|)"). (3.10)

Yr

We can express in a linear regression model as [76]

Q1Q2Q3
= > wk, (3.11)
p=1
where
' Wr,p
R (3.12)
P 10203

We can calculate the value of w; , from the HR and LR of training sets. Each training image
provides one equation to find w), (p = 1,...,Q1Q2Q3) and the column vector formed by
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Figure 3.1: block diagram of color face hallucination with the linear regression model in
MPCA

the rth projection coefficients for the HR images be y". In the same way, the column vector
formed by the pth projection coefficients for the corresponding LR set be y; and we can state
as:

¥y = Y1 ¥Y0u0005] W (3.13)
where
W, = (W], oo W0,0005) - (3.14)
After that w, can be given by an Least-Square (LS) estimate:
W = [V, s YQu0005] V7 (3.15)

3.2 Color Face Super-Resolution Based on Tensor Patch Method

In this section, we apply HOSVD tensor patch within the well-known framework for
color face hallucination. A tensor structure provides a powerful mechanism to incorporate
information and interaction of these image ensembles of multiple modalities at different
resolutions. More precisely, given a training dataset of high-resolution face images, we blur
and subsample them with different Gaussian filters and sub-sampling factors, while keeping
the image size unchanged, so to generate a set of low-resolution training face images. To
further improve the modeling accuracy, we uniformly decompose these face images into
overlapped image blocks, and then obtain a hierarchical ensemble containing block-wise
face images at low- and high-resolution. With these training data in place, we can construct
a seventh-order tensor D. We use HOSVD to decompose D into

D=2Z2 X1 Uidens X2 Upi:cell X3 UpizelZ X4 Upatchl X5 Upatch2 X6 Ucolor X7 Uresos (316)
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where tensor D groups these block-wise training images into a tensor structure, and the core
tensor Z governs the interactions between the seven mode factors. In (3.16), mode matrix
Ui 4ens Spans the parameter space of identity, Upizer1 and Upizer2 span the space of pixel in
x-axis and y-axis, Upaten1 and Upgeenz span the space of patch in x-axis and y-axis, Ucolor
span the spaces of color space and U, .., span the space of resolution.

To model high-resolution details for the purpose of face hallucination, we uniformly
decompose the low- and high-resolution face images into small overlapped patches, and
perform tensor modeling at patch level. We can hallucinate high-resolution image data with
all the decomposed patches. The final high-resolution face images are compositions of their
corresponding overlapped small patches.

We suppose that H; is the high-resolution color images, S; is its low-resolution corre-
spondences to be synthesized and L, is any low-resolution color face input images. The task
comes as finding the maximum a posteriori (MAP) estimation of H, given L; which can be
formulated as

{Hipmap} = argmaxy, g logP(H,,S|L,) (3.17)
By applying Bayes rule, we have

P(Hl,Sl|L1) = P(H]lS],L])P(S]lLl) (318)

During the sequential processes of our face hallucination, the high-resolution face image
is independently reconstructed. Based on the synthesized low-resolution image, the above
expression can be state as

P(Hy,81[L1) = P(H[8;)P(S:1|Ly)
= P(S:[H,)P(H;)P(S:|Ly). (3.19)
The high-resolution image is naturally composed from the two part:
H =H™ + H", (3.20)

where H'™ represents face images containing low- and middle-frequency information, and
H" contains high-frequency part. Since H"™ contributes the main part of after blurring and
subsampling, then the probability P(S|H) can be approximated as P(S|H'™). Based on
(3.20), we also have P(H) = P(H"|H'™)P(H'™), and the estimation of H given H"™" is
equivalent to the estimation of H" given H'™, we then reformulate probability P(S;|H, )P (H,)
as

P(S,|H,)P(H;) = P(S,[H{™)P(H}[H{™) P(H[™). _
= P(H{™S,)P(H,[H™). (3.21)

We can rewrite probability P(S;|L;) as

P(SIILI) = P(Lllsl)P(Sl)~ (3.22)
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Probabilities P(L,|S,)P(S;), P(H™|S,) and P(H,|H\™) sequentially constrain S;, H{" and
H;. This leads to a two-step sequential solution. In the first step, by using a global image-
based tensor, we can synthesize the low-resolution S;. In the second step, after obtaining S,
the HY™ and H, containing low-frequency, middle-frequency and high-frequency informa-
tion can be computed using the local patch-based tensor. In addition, the final high-resolution

H; is computed by maximizing P(H, [H™).

3.2.0.1 Global Low-Resolution Color Face Image Synthesis

In this section, the synthesis S, is computed by maximizing probability P(L4|S;)P(S;).
Since L, and S; are the low-resolution given and synthesized face images with the same
modality, we regard their relationship as Gaussian

1
P(Ly[S;) = ?e:rp{—ilsl — Li|*/A} (3.23)

where f is a normalization constant and A scales the variance.

In (3.16), if we index into its basis subtensor at a particular modality m’, then the
subtensor containing the individual image data as in (3.16) can be approximated by G =
26 X1 Uidens X2 Upizetn X3 Upizer2 and we get G,,n = Bg | X3 VT We unfold it into matrix
representation and it becomes G(I)T =B e V. Suppose G correspond to color face
images S,, then we substitute for S, in (3.23) resultmg n

1
P(L,|S)) = 76mp{~|‘BG(1)ITV — L]/} (3.24)

In reality the given low-resolution L; and S; synthesized have the same modality. By setting
B,orV = L;, we maximize (3.24) and approximately compute

ml

V = (BG(” BG(x)T) BG(liTLl (325)

ml

where (BG“) BG(I)T) BG(I)T is the pseudoinverse of B)r.
3.2.0.2 Local Patch-Based and High-Frequency Residue Recovery in Color Face Im-
age Hallucination

To obtain their hallucinated high-resolution, we maximize P(H\™|S,) using the local
patch-based multiresolution tensor. The inference of HY"™ from S; is independent. In the
following, we take HY™ as an example to illustrate this second process.

Since the training local multiresolution tensor is constructed from small overlapped
patches, we decompose the synthesized S, uniformly in the same way as decomposing train-
ing data, and factorize the likelihood P(H!™|S,) at patch level as

P(Hlm|sl H P 11’1 5 lslpl Pz) (3.26)

P1,p2=1
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. . o . . lm .
Assuming A is the blurring and subsampling operator connecting Hlpl-pz and S;, . inan
imaging observation model, we regard these processes as Gaussian, therefore

N

' 1

PHE™S:) = 1] Eezp{—HAH’,"p“_m e N | (3.27)
p1,p2=1

where w is a normalization constant and 3 scales the variance.

Suppose the local multiresolution tensor in (3.16) has a basis tensor
BC = ZC X2 Upixell X3 UpixelZ X4 Upatchl X5 Upatch2 X6 Ucolor X7 Uresos- (328)

We index into this basis tensor at a particular resolution r and patch position p; and po,
yielding a basis subtensor

T i T
Bﬁr‘m,pz = Zr X Upi:cell X3 Upi:cel? X6 Ucolor X4 Vpl X5 sz X7 Vr . (8:29)

Then as described in Section (2), the subtensor containing the pixel data for that particular

patch can be approximated as D,.,, ,, = B, . X1 VT, and its unfolded representation is
(rylgfm = B, ;)r V. Similarly, we can obtain a subtensor for resolution r’ of the same patch

T.P1.P2
position, which is Li},)z,Tl,I,? = B, wr V. Suppose LOT  and LET correspond to S,

7 T,P1,P2 r’/,p1,p2
r.p1.P2

and Hﬁ':l », » respectively; we substitute them in (3.27) as

N
m 1 v
PH™S) = [] \ Ee:cp{—HABL(T}‘)pTI.pQV— B,y VI[*/B}. (3.30)
pP1,p2=

We optimize the parameter V based on the construction properties of the local multiresolu-

tion patch tensor, which suggests that the relation between B, o)z V and B, wyr Vobserves
' .p1.p2 T,P1.P2

a basic imaging observation model through the blurring and subsampling operator A. This
is consistent with the uniqueness of the identity parameter vector in a tensor space as well.
By setting V = V, we can approximately compute H’l’:l py S

H™ =B,ur Y8, (3.31)

Ipy.p2 el

where W is the pseudoinverse of B, ;)r  and is equal to (B T )_1BL(1)T . After
T,P1,P:

wr B
reconstructing all the patches at different positions, the ﬁn;lr’}l)llz‘lpﬁuclli;’;t’;i colorr,fpz;gé image
H'™ is simply a composition of the corresponding hallucinated small patches.

We recover the highest frequency part by patch learning from the high-resolution train-
ing data. The inference of H; from Hllm is independent. In the following, we take H; as an
example to illustrate how to hallucinate the final high-resolution face images.

We use a MRFs to model the H; to be inferred. By decomposing into H{™ square

patches

P(H,[H™) = P(H"|H;)P(H,)

q

Q
~ [P, PoH,). (332)
g=1
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The difference between H; and H{™ is the high-frequency band information. Since the high-
frequency information depends on the lower-frequency band, we use the Laplacian image

Lyim of HY™ to represent the middle-frequency band. To infer H;, we use the sum of squared

differences of Laplacian images as metrics to model H P(H{7H,,) as
Q Q
H P Hlmlqu a He'Ep—HLHlm — LH“)” (333)
q=1 q=1

where LH“) are the Laplacian images from high-resolution training face images. Compar-

ing the Laplacian images LH:m with {LH“)}t , from the training dataset, the patch H(t)
with LH(,) closest to LHlm 18 the most probable to be chosen as Hy,. Since we model the
high- resolutlon image as a MRFs, based on the HammersleyClifford theorem, P(H,) is a
product Hqu,Hxa ®(H,,, Hy5) of compatibility functions ®(H,,, Hig) over all neighboring
pairs, where H,,, Hy5 are one of the neighboring patch pairs in a 4-neighbor system.

The compatibility function ®(H,,, Hyz) is defined using the similarity of pixel values
on the overlapping area of the neighboring patches:

®(H,,, Hyg)aexp{—||On,, — Ony,I*}, (3.34)

where Oy,, denotes the pixels of patch Hy, overlapping with neighboring patch Hyg, and vice
versa for Oy,,. We illustrate this 4-neighbor system and the corresponding patch overlapping
relations, then H; estimated as

Q
argmaxy, | [ P(H7Hy,) [ [ @(Hi,, Hig). (3.35)

q=1 (9,9)

Solving probabilistic (3.35) to obtain H; is not a trivial task. We use the iterated con-
ditional modes (ICM) algorithm [77]. More specifically, we maximize P(Hll'(ﬂqu) for all
patch positions g€{1, ..., @} to yield the initial maximum likelihood estimate of . Based on
this initial estimate, we then pick a random patch position ¢ and update the estimate of Hy,
using the current estimates of its neighbors Hz by maximizing P(H’{;|H1q) (00 2(Hug, H;).
We repeat this random patch selection and updating process until converging to the final
high-resolution image H;.





