

อัตราการใช้พลังงานในอาคารมีปริมาณเพิ่มขึ้นทุกปี มีสัดส่วนร้อยละ 20.2 ของปริมาณการใช้พลังงานทั้งประเทศ การใช้พลังงานจากระบบปรับอากาศเป็นสัดส่วนสูงมากสำหรับอาคารในเขตภูมิอากาศร้อนชื้น การลดปริมาณการใช้พลังงานดังกล่าวและการแก้ปัญหาสภาวะโลกร้อน หลายประเทศออกข้อกำหนดและมาตรฐานต่างๆ ได้แก่ LEED, BREEAM, CASBEE และ GREENMARK เป็นต้น

การออกแบบอาคารมีความสำคัญอย่างมากต่อการลดปริมาณการใช้พลังงาน ความเข้าใจปัจจัยด้านพลังงาน สิ่งแวดล้อมและสภาวะอากาศเป็นสิ่งจำเป็นอย่างยิ่งในการออกแบบ ผลการศึกษาวิจัยพบว่าปัจจัยที่มีอิทธิพลสูงต่อปริมาณการใช้พลังงานสำหรับการออกแบบอาคาร ได้แก่ 1) สภาพแวดล้อม 2) ภูทธรของอาคาร 3) คุณสมบัติวัสดุก่อสร้างและวิธีการติดตั้ง และ 4) ประสิทธิภาพคุปกรณ์และเครื่องจักร ตามลำดับ ดังนั้นการออกแบบเพื่อให้อาคารประหยัดพลังงานและอนุรักษ์สิ่งแวดล้อมสามารถประเมินผลได้โดยดัชนีชี้วัดการใช้พลังงานของอาคารในภูมิภาคร้อนชื้น มีรายละเอียดดังนี้

$$\begin{aligned} I_{CUTS} &= I_c * I_u * I_T * I_s \\ &= 1/COP * \Sigma U.S * \Delta T * S/A \end{aligned}$$

COP หมายถึงประสิทธิภาพเครื่องปรับอากาศ U (W/m²°K) หมายถึงสัมประสิทธิการถ่ายเทความร้อนของวัสดุ S (m²) หมายถึงพื้นที่เปลือกอาคาร ΔT (°C) หมายถึงอุณหภูมิอากาศ และ A (m²) หมายถึงพื้นที่ใช้สอยของอาคาร

ดัชนีการใช้พลังงานของอาคารเกิดจากผลรวมความสัมพันธ์ของ 4 ตัวแปร เพื่อใช้ระบุเกณฑ์ชี้วัดประสิทธิภาพการใช้พลังงานในอาคาร อาคารมาตรฐานทั่วไปดัชนีชี้วัดเฉลี่ย I_{CUTS} 36.32 W/m² และค่าเบี่ยงเบนมาตรฐาน 23.28 โดยอาคารที่มีประสิทธิภาพสูงสุดมีค่าดัชนีชี้วัดเท่ากับ 0.60 W/m² และอาคารที่มีประสิทธิภาพต่ำสุดมีค่าดัชนีชี้วัด 116.66 W/m² ผู้ออกแบบสามารถปรับปรุงปัจจัยทั้งหมดเพื่อลดปริมาณการใช้พลังงานในอาคารได้ถึง 194 เท่า หากปรับปรุงอาคารโดยใช้ปัจจัยบางส่วนสามารถลดการใช้พลังงานลงได้ ตัวอย่างเช่น การปรับปรุงอุณหภูมิอากาศ I_u เพียงปัจจัยเดียวสามารถลดปริมาณการใช้พลังงานได้ 4 เท่า การเลือกใช้วัสดุที่มีค่าการนำความร้อนต่ำ I_s ลดการใช้พลังงานได้ 23.56 เท่า และการเปลี่ยนหรือปรับปรุงระบบปรับอากาศ I_c สามารถลดการใช้พลังงาน 1.48 เท่า ส่วนการลดพื้นที่ผิวอาคาร I_T สามารถลดปริมาณการใช้พลังงานได้อย่างมาก แต่สำหรับอาคารเดิมการลดพื้นที่ผิวของเปลือกอาคารนั้นควรวิเคราะห์การคุ้มทุนและความเป็นไปได้ อย่างไรก็ตามการปรับปรุงอาคารหรือการออกแบบอาคารโดยใช้ปัจจัยเพียง 3 ปัจจัยที่กล่าวมา สามารถทำให้อาคารมีประสิทธิภาพดีกว่าเดิมถึง 94.26 เท่า

ดัชนีการใช้พลังงานนี้คำนวณได้โดยง่าย สามารถใช้เป็นเครื่องมือสำหรับการออกแบบเบื้องต้น หมายความว่าสำหรับเจ้าของอาคาร สถาปนิก วิศวกร และผู้ออกแบบด้านอื่น ๆ ที่เกี่ยวข้อง จากปัจจัยทั้งสี่สามารถมองภาพรวมของการประหยัดพลังงานของอาคารอย่างชัดเจน ผู้ประเมินสามารถปรับปรุงอาคารให้มีประสิทธิภาพการใช้พลังงานให้ดีขึ้นได้ตามความเหมาะสม

4574908725 : MAJOR ARCHITECTURE

KEY WORD : ENERGY INDEX / HOT- HUMID CLIMATE / BUILDING PERFORMANCE / EVALUATION TOOLS

RAVIJ. KUANPRASERT : THE STUDY OF BUILDING ENERGY INDEX IN HOT- HUMID REGION.

THESIS ADVISOR : PROF. DR. SOONTORN BOONYATIKARN, THESIS COADVISOR:

ASSOC. PROF. VORASUN BURANAKARN, Ph.D., 384 pp.

Energy consumption in buildings has increased over decades as 20.2 % of total national consumption today. To solve the problems as well as global warming issues, the energy indices have been introduced and applied such as LEED, BREEAM, CASBEE, and GREENMARK. As a hot-humid climate, air-condition is a major portion of consumption in buildings.

To start conserve energy use in building, architects need to understand and make an appropriate energy conservation design and provide a complete human comfort of building environments. It is found that microclimate temperature is a major impact factor to energy use inside buildings. Then, the area of building envelope and its materials need to conciliate with. The last factor is equipments and their efficiencies. Those singular factors all together can reduce energy consumption. It can concluded that architect can reduce energy consumption by improving the major influence factors, started with 1) site and location, 2) building form, 3) materials, and 4) equipment efficiency, respectively. The Building Energy Performance Index in Hot-humid region is defined as

$$I_{CUTS} = I_c * I_u * I_T * I_s \\ = 1/COP * \Sigma U.S * \Delta T * S/A$$

COP is the coefficient of performance of air-conditioner, $\Sigma U(W/m^2K)$ is the sum of the rate of heat flow over envelope, $S(m^2)$ is the surface area, $\Delta T(^oC)$ is the temperature difference and $A(m^2)$ is the usable area.

The Building Energy Performance Index, which can be used to measure the energy efficiency level of a building, is the result of composition of 4 singular index studied in this research. A standard building will have the average composite index of 36.32 w/m² with standard deviation of 23.28. In the study, the most efficient building marks 0.60 w/m² and the least efficient building 116.66 w/m².

The results also show that improvement of those singular factors help to reduce energy consumption up to 194 times. The index would help to identify the necessary modification factor(s) of individual building to make it become more energy efficient. For example, the improvement of I_T will increase efficiency by 4.00 times; I_u 23.56 times and I_c 1.48 times. Whereas modification of I_s does not reflex a cost-effective investment and possibility. The three former factors, if combined, will significantly increase Building Energy Performance as high as 94.26 times. However, an individual index factor is simply applicable to evaluate or estimate energy consumption from initial design stage, construction stage, and throughout building operation.

Building Energy Performance Index with Energy Index Checklist, computer program, and index formula can be initially applied as a simple tool for building owners and appropriate design guideline for designers. It helps to have a clear picture to improve all four significant factors.