

งานวิจัยนี้เป็นการศึกษาความเป็นไปได้ของกระบวนการแก๊สซิฟิเคชันน้ำยางด้ำภายน้ำที่สภาวะเหนืออุ่นๆ ในการร้อนด้วยเตาปฏิกรณ์แบบฟลูอิดเต็มเบด โดยใช้น้ำยางด้ำเจือจากกระบวนการย่อยเยื่อแบบคราฟท์ มีจุดประส่งค์เพื่อศึกษาสภาวะที่เหมาะสมในการเกิดปฏิกิริยาประกอบด้วย ความดัน อุณหภูมิ ความชื้นขั้นและระยะเวลาในการเกิดปฏิกิริยา โดยพิจารณาสภาวะการเกิดปฏิกิริยาที่ให้ปริมาณก๊าซผลิตภัณฑ์ เปอร์เซ็นต์การเปลี่ยนรูปของ C และ H ในน้ำยางด้ำเป็นก๊าซผลิตภัณฑ์ค่าเปอร์เซ็นต์การเปลี่ยนรูปของ C ในน้ำยางด้ำ เป็นก๊าซโดยรวมและประสิทธิภาพด้านพลังงาน ที่เกิดขึ้นเมื่อค่าสูงสุด โดยวิเคราะห์ก๊าซผลิตภัณฑ์ที่เกิดขึ้นด้วยเครื่องแก๊ส โครมาโตกราฟี (GC) ส่วนชาร์และน้ำมันดินวิเคราะห์โดยใช้การรั่วน้ำหนัก ผลการทดลองพบว่า ความดันในช่วง 220-400 บาร์ยาการ ไม่มีผลต่อชนิดและปริมาณของผลิตภัณฑ์รวมถึงเปอร์เซ็นต์การเปลี่ยนรูปของ C ในน้ำยางด้ำเป็น ก๊าซโดยรวม โดยมีค่าไกล์เดย์กันที่ทุกค่าความดัน เมื่ออุณหภูมิและระยะเวลาการเกิดปฏิกิริยาเพิ่มขึ้นในช่วง 375-650° ซ และ 5-120 วินาที พบร่วมที่อุณหภูมิ 650° จากรากการเกิดปฏิกิริยา 120 วินาที มีเปอร์เซ็นต์การเปลี่ยนรูปของ C และ H ใน น้ำยางด้ำเป็นก๊าซเชื้อเพลิง (H_2 , CO , CH_4 , และ C_2) สูงสุดคือ 23.6, 12.6, 19.3, และ 30.1 เปอร์เซ็นต์ ตามลำดับ มี เปอร์เซ็นต์การเปลี่ยนรูปของ C ในน้ำยางด้ำเป็นก๊าซโดยรวมสูงสุด 84.8 เปอร์เซ็นต์ ให้ค่าความร้อนของก๊าซโดยรวม สูงสุด 9.4 เมกกะจูล/กรูบากาเมตร มือตราช่วงของค่าความร้อนของก๊าซที่เกิดขึ้นกับค่าความร้อนของน้ำยางด้ำ (LHV gas/LHV Black liquor (dry basis)) สูงสุดเท่ากับ 1.2 สำหรับการศึกษาความเข้มข้น 10 และ 20 เปอร์เซ็นต์น้ำหนักแห้ง พบร่วมที่ความเข้มข้น 10 เปอร์เซ็นต์น้ำหนักแห้ง มีเปอร์เซ็นต์การเปลี่ยนรูปของ C ในน้ำยางด้ำเป็นก๊าซโดยรวม และ อัตราส่วนค่าความร้อนของก๊าซที่เกิดขึ้นกับค่าความร้อนของน้ำยางด้ำสูงกว่า แต่มีปริมาณก๊าซและค่าความร้อนที่ได้จาก ก๊าซผลิตภัณฑ์ต่ำกว่าที่ความเข้มข้น 20 เปอร์เซ็นต์น้ำหนักแห้ง ข้อมูลที่ได้จึงยังไม่ชัดเจนพอในการพิจารณาค่าความเข้มข้นที่เหมาะสมในการทดลองต้องอาศัยผลการศึกษาค่าน้ำเพิ่มเติมจากหลาย องค์ประกอบ โดยเฉพาะความคุ้มค่า ทางเศรษฐศาสตร์ในการแก๊สซิฟิเคชันที่สภาวะเหนืออุ่นๆ ของน้ำจากงานวิจัยในอนาคต

Feasibility study on supercritical water gasification of black liquor is presented in the work reported here. The objectives were to suggest appropriate operating parameters including pressure, temperature, concentration, and reaction time which would yield the highest gas production, percent carbon and hydrogen in black liquor converted to gas products, carbon conversion, and energy efficiency. Gasification was performed in a quartz capillary heated in a fluidized bed reactor. Weak black liquor used in this research was taken from kraft pulping process. The obtained gas products were quantified by gas chromatography (GC). Char and tar were collectively analyzed by weight measuring. Results indicated that pressure between 220-400 atm has insignificant influence on the gas products and carbon conversion of the process. Increasing temperature and residence time between 375-650°C and 5-120 sec resulted in greater gas production, overall carbon conversion, and energy efficiency. Optimum operating conditions were achieved at 650°C and 120 sec where the maximum values of percent conversion to carbon and hydrogen fuel gases (H_2 , CO , CH_4 , and C_2) were 23.6, 12.6, 19.3, and 30.1 percent with overall carbon conversion of 84.8 percent and energy content of 9.4 MJ/m³ and energy ratio of LHV gas/LHV black liquor (dry basis) of 1.2. For weak black liquor with solid contents of 10 and 20 percent by weight, higher carbon conversion and energy ratio was obtained with lower concentration sample, but gas production and energy content were lower than black liquor with higher solid content. Hence, further studies on other factor such as economic of the process should be carried out in order to identify the optimum solid content for gasification process of black liquor under supercritical water.