

การวิจัยครั้งนี้มุ่งหมายเพื่อศึกษาความสัมพันธ์ระหว่างการใช้งานเครื่องจักรในโครงการก่อสร้าง และต้นทุนดำเนินการของเครื่องจักร รวมถึงการพัฒนาแบบจำลองเพื่อใช้ในการประมาณค่าใช้จ่ายในการทำงานที่มีความสัมพันธ์กับการใช้เครื่องจักรทำการก่อสร้างงานดิน โดยแยกประเภทเครื่องจักรตามระบบมาตรฐานวัดการทำงาน ซึ่งการวิเคราะห์เครื่องจักรระบบมาตรฐานวัดระยะทางในงานวิจัยนี้ ได้นำเสนอตัวอย่างรถบรรทุกสิบล้อขนาดน้ำหนักบรรทุกรวม 21 ตัน และการวิเคราะห์เครื่องจักรระบบมาตรฐานวัดช่วงไม่สามารถของเครื่องยนต์ใช้รถชุดไฮดรอลิกขนาดน้ำหนัก 20 ตัน ปริมาตรที่ตัก 0.7 ลูกบาศก์เมตร

ขั้นตอนการดำเนินงานวิจัยนี้เริ่มจากทำการสำรวจข้อมูลเกี่ยวกับโครงสร้างต้นทุนค่าดำเนินการ และปัจจัยที่มีผลกระทบต่อค่าใช้จ่ายในการทำงานของเครื่องจักร ด้วยแบบสอบถามจากผู้มีประสบการณ์ 38 ท่าน และสัมภาษณ์ผู้เชี่ยวชาญ 3 ท่าน เพื่อวิเคราะห์หาปัจจัยที่มีความสำคัญในการสร้างแบบจำลอง

ข้อมูลที่ใช้ในงานวิจัยครั้งนี้ประกอบด้วยข้อมูลปริมาณเชื้อเพลิง และสารหล่อลื่น ตลอดจนค่าอัตราไฟล์ต่างๆ จากการใช้งานเครื่องจักรของผู้ประกอบการที่มีเครื่องจักรในครอบครอง โดยใช้ข้อมูลที่มีการบันทึกจัดเก็บที่ผ่านมาของเครื่องจักรตั้งแต่เริ่มใช้งาน ซึ่งเป็นข้อมูลจากผู้ประกอบการ 3 ราย โดยข้อมูลที่ใช้ในการวิเคราะห์เริ่มจาก พ.ศ 2541 ถึง พ.ศ 2549 เป็นข้อมูลของรถบรรทุกสิบล้อจำนวน 23 คัน และรถชุดไฮดรอลิก 17 คัน

แบบจำลองค่าใช้จ่ายในการทำงานเครื่องจักรที่สร้างขึ้นจากอัตราการใช้เชื้อเพลิง การใช้สารหล่อลื่น สารละลาย และเบอร์เซนต์ค่าซ่อมบำรุงรักษาสะสม โดยทำการวิเคราะห์ข้อมูลด้วยสมการถดถอยเชิงชั้อน โดยใช้ปัจจัยที่ได้จากแบบสอบถาม และการสัมภาษณ์เป็นตัวแปรอิสระ ซึ่งผลการเปรียบเทียบแบบจำลองกับข้อมูลจริง พบว่าอัตราการใช้เชื้อเพลิงของรถบรรทุกสิบล้อจากแบบจำลองมีค่าคลาดเคลื่อน 10 เปอร์เซนต์ และรถชุดไฮดรอลิกมีค่าคลาดเคลื่อน 8 เปอร์เซนต์ ส่วนสารหล่อลื่นค่าคลาดเคลื่อนมากที่สุด 30 เปอร์เซนต์ ในทั้งสองระบบมาตรฐาน

ผลการทดสอบแบบจำลองพบว่าอัตราการใช้เชื้อเพลิงมีการเปลี่ยนแปลง เนื่องจากผลกระทบของตัวแปรปัจจัยสภาพการทำงาน สำหรับปริมาณการใช้สารหล่อลื่น และเบอร์เซนต์ค่าซ่อมบำรุงรักษาสะสมมีแนวโน้มเพิ่มขึ้นตามความสัมพันธ์กับตัวแปรระยะเวลาการใช้งานของเครื่องจักร

This research explores the relationship between the actual usages of construction machines and their operation costs. A simulation model to predict the operating cost of heavy equipment for earth work construction is also introduced based on such relationship. In this research, as a source of data collection, construction equipment with two different usage meters, which are distance meters and hourly meters, are represented by the 21-metric-ton trucks and 20-ton hydraulic excavators with 0.7 cubic-meter buckets, respectively.

Questionnaires were distributed to 38 experienced contractors to identify the structure of equipment operating cost and also the factors affecting the equipment operating costs. Three specialists were also interviewed to evaluate the factors for developing the simulation model.

Fuel consumption, lubricant usages, and maintenance cost of the equipment were collected on 23 trucks and 17 hydraulic excavators from 3 main contractors. The data available for analysis came from historical equipment records between 1998 and 2006.

The simulation model was generated from the site operation conditions as independent variables and the fuel consumption, lubricant usage as well as percentages of cumulative maintenance cost of equipment. The multiple regression analysis was used to identify the relationships of these variables. The errors found from the prediction of fuel consumption were up to 10 percents and 8 percents for trucks and hydraulic excavators, respectively. In addition, from estimating the lubricant costs, the maximum errors were up to 30 percents for both equipment with distance meters and hourly meters. From the research, it was found that the fuel consumptions varied due to the factors related to the work conditions whereas the lubricant consumptions and percentages of cumulative maintenance costs varied relatively to the usage meters of equipment.