

200855

มาตรฐานของการเจือปนของตะกั่วลงสูน้ำของ WHO(World Health Organization)ต้องมีค่าไม่เกิน 0.01 มิลลิกรัมต่อน้ำหนึ่งลิตร งานวิจัยที่ผ่านมาเราพบแนวทางการแก้ปัญหาอยู่ 2 ทางคือทางแรกคือการกำจัดตะกั่วบริเวณผิวโดยกรรมวิธีทางพื้นผิว และอีกทางคือการเติมธาตุอื่นๆ ทัดแทนตะกั่วซึ่งตัวที่ได้รับความนิยมอย่างมากคือ บิสมัท(Bismuth) ซึ่งจะเป็นหัวข้อหลักในการวิจัย โดยที่งานวิจัยนี้ประกอบด้วย สองกลุ่มการทดลอง กลุ่มแรกคือ กลุ่มของ การนำโลหะผสม 4.5% ดีบุก 7% สังกะสี ทองแดงมาหลอมเหลว แล้วเติม บิสมัทลงไปที่ 0.5%, 1%, 2%, 3%, 5% และ 7.5% เพื่อศึกษาผลของบิสมัทต่อพฤติกรรมการหดและคุณสมบัติทางกล เพื่อพิจารณาถึงการนำไปใช้ในระบบขนส่งน้ำ และเพื่อทำแบบจำลองอีกกลุ่มคือโลหะทองแดงผสมไม่เจือตะกั่วซึ่งพัฒนาโดยการผลิตในประเทศญี่ปุ่น โดยที่ริบบิ้นงานหั่นหดถูกหลอมเหลวในเตาหลอมแบบเหนี่ยวน้ำไฟฟ้าที่ อุณหภูมิ 1250°C และหลังจากทำการอุบัติหั่น 15% พอสพอร์ส – ทองแดง น้ำโลหะทองแดงผสมหลอมเหลว จะถูกทำการหดที่ อุณหภูมิ 1150°C ลงในแบบหล่อ 4 ชนิด (JIS H 5120 type A, JIS 5120 type E, Tatur mold and แบบหล่อห้องกระเบนออก เส้นผ่าศูนย์กลาง 30 มิลลิเมตร ยาว 100 มิลลิเมตร ผลการหดลงป่วยกว่าคุณสมบัติทางกลสามารถผ่านเกณฑ์มาตรฐานของ JIS สำหรับ โลหะทองแดงผสมเกรด CAC 406 (ค่าความเดินคงที่มากกว่า 195 MPa และ ค่าการยืดตัวมากกว่า 15%) เมื่อมีปริมาณบิสมัทผสมอยู่ไม่เกิน 2.5% โดยที่เมื่อเราทำการเพิ่มปริมาณบิสมัทในโลหะทองแดงผสม ปริมาณของรูพรุนและ คุณสมบัติการกลึงใส่กัดเจาะ ก็เพิ่มขึ้น

200855

The WHO (World Health Organization) water quality standard for lead dissolution has been established to be less than or equal to 0.01 mg per one liter of water. The finding shows two countermeasures that can solve the dissolution issued. The first method is to remove lead near surface using surface treatment technology and the second method is to replace that lead with other elements among which the most commonly is used bismuth. That is a main point of this research; two types of alloys are employed for testing. The first type is Cu-4.5% Sn-7% Zn alloy ingot which is prepared with bismuth added into the alloy with 0.5, 1.0, 2.0, 3.0, 5.0 and 7.5% Bi. This process is done in order to investigate the effect of bismuth content, rather wider range for considering water supply and bearing usages, on shrinkage behavior and mechanical properties. Another type is that commercially available lead free alloys in Japan.

The specimens are melted in induction furnace of 50 kg capacity at 1250°C . After deoxidation of 0.2% of 15% P-Cu alloy, the molten metal is poured at 1150°C into 4 types of mold (JIS H 5120 type A, JIS 5120 type E, Tatur mold and 30 millimeter diameter 100 mm in length cylinder) The result shows that the Mechanical properties exceeded over the requirement of JIS CAC406 Standard are obtain when bismuth content is less than 2.5%. Increasing bismuth content yields the reduction of pipe volume while the porosity and machinability are increased.