

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาระบบวิธีในการผลิตเมล็ดพันธุ์ที่สะอาดและปลอดภัย โดยใช้สารสกัดชีวภาพเคลือบเมล็ดพันธุ์ ซึ่งสารเคลือบเมล็ดพันธุ์ดังกล่าวต้องไม่มีผลกระทบต่อคุณภาพเมล็ด โดยรวมและต้องได้อาหารที่สะอาด ปลอดภัย ไม่มีสารพิษตกค้าง งานวิจัยได้ดำเนินการตั้งแต่เดือน สิงหาคม 2547 – กรกฎาคม 2550 โดยใช้ภาควิชาชีววิทยา คณะวิทยาศาสตร์ และภาควิชาพืชไร่ คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่ และ University of Gottingen ประเทศสาธารณรัฐเยอรมัน เป็นสถานที่ดำเนินการวิจัย การวิจัยเบื้องต้นเป็นการทดสอบหาฤทธิ์ทางชีวภาพของสารสกัดจากพืชชนิดต่าง ๆ ที่มีผลต่อไตรทำ ผลจากการทดสอบพบว่าสารสกัดจากหนอนตายยาก (*Stemona* spp.) ชนิดต่าง ๆ และกานพลู (*Eugenia caryophyllus*) มีประสิทธิภาพดีที่สุดในการกำจัดไตรทำ และเมื่อนำสารสกัดจากพืชกลุ่มดังกล่าวไปทดสอบหาความสามารถในการยับยั้งเชื้อรา พบว่าสารสกัดที่หายากจากงานพัฒนาขึ้น 1% สามารถยับยั้งเชื้อราที่ใช้ทดสอบได้เกือบทุกชนิดอย่างสมบูรณ์ (100%) และจากการศึกษาเพิ่มเติมยังพบว่าการใช้ eugenol ซึ่งเป็นน้ำมันหอมระเหยที่สารสกัดได้จากการพัฒนาให้ฤทธิ์ที่ดีกว่าสารสกัดที่หายาก ต่อใช้ eugenol เพียง 0.25% ก็สามารถยับยั้งการเจริญเติบโตของเชื้อราที่ใช้ทดสอบทั้งหมดได้ 100% และยังพบว่า eugenol มีประสิทธิภาพสูงในการกำจัดแมลงศัตรุพืช

เมื่อใช้ 1% eugenol ทดสอบเคลือบเมล็ดพันธุ์ถ้วนเหลืองพบว่าให้ผลดี โดยให้เปอร์เซ็นต์การงอก 100% และมีการปนเปื้อนของเชื้อราเพียง 3.33% เพื่อให้ eugenol คงเคลือบอยู่บนเมล็ดพันธุ์ได้เป็นเวลานาน จึงใช้เทคโนโลยีและสาร โพลีเมอร์เข้าช่วยในการเคลือบเมล็ดพันธุ์โดยสารเคลือบเมล็ดประกอบด้วย น้ำ: glacial acetic acid : ตีพสมอาหาร : eugenol ด้วยอัตราส่วน 95.2 :1: 0.7 :1 ร่วมด้วย chitosan 2% และ sodium lignosulphonate 0.1%

เมื่อทดสอบเมล็ดเคลือบกับเชื้อราเป้าหมายที่เบกได้จากเมล็ดพันธุ์แต่ละชนิดในงานเพาะเลี้ยง พบว่าเมล็ดพันธุ์ผักกาดขาวตู้งที่เคลือบด้วย 1% eugenol ร่วมกับ chitosan มีประสิทธิภาพในการยับยั้งเชื้อราน้อยกว่าเมล็ดที่คลุกด้วย captan แต่ให้เปอร์เซ็นต์การงอกที่สูงกว่า สำหรับเมล็ดพันธุ์ถ้วนเหลืองและเมล็ดพันธุ์ขาว พบว่า เมล็ดที่เคลือบด้วย eugenol ร่วมกับ chitosan สามารถยับยั้งการเจริญของเชื้อราได้ดีกว่าเมล็ดที่คลุกด้วย captan แต่เปอร์เซ็นต์การงอกของเมล็ดจะดีกว่า นอกจากนี้เมล็ดเคลือบด้วย 1% eugenol ดังกล่าวยังไม่มีผลต่อลักษณะทางกายภาพและเคมีของเมล็ดพันธุ์เป็นส่วนใหญ่ และหลังจากเก็บรักษาเป็นเวลา 6-12 เดือน เมล็ดพันธุ์ที่ถูกเคลือบด้วย eugenol จะให้ดันอ่อนที่แข็งแรงและคุณภาพเมล็ดไม่แตกต่างจากเมล็ดปกติ ในขณะที่เมล็ดพันธุ์ที่คลุกด้วย captan จะมีชีวิตและคุณภาพโดยรวมน้อยกว่า

ส่วนผลต่อแมลงของเมล็ดที่เคลือบด้วย eugenol ร่วมกับ chitosan มีแนวโน้มแสดงประสิทธิภาพทั้งการไล่และการฆ่า ยกเว้นในด้วงหมัดผักไม่มีประสิทธิภาพในการฆ่า

สำหรับความปลดภัยเนื่องจากสารอะฟลาทิอคซินนั้น ในเมล็ดพันธุ์ที่เคลือบด้วย eugenol ร่วมกับ chitosan และเมล็ดที่คลุกด้วย captan จะมีปริมาณสารอะฟลาทิอคซินสูงกว่าเมล็ดปกติ ทั้งนี้ อาจจะเกิดจากความคลาดเคลื่อนในการเคลือบเมล็ดที่มีความชื้นสูงกว่าปกติ

การทดสอบประสิทธิภาพของเมล็ดเคลือบในเรือนเพาะชำโดยเพาะเมล็ดในกระถางที่มีดินผสมเชื้อราชนิดต่าง ๆ ในชัตตราส่วนที่เหมาะสมที่ได้คัดเลือกไว้ พบว่าเมล็ดพันธุ์ผักกาดหวานตุ้งที่เคลือบด้วย eugenol ร่วมกับ chitosan สามารถออกได้ดีกว่า และมีจำนวนต้นอ่อนที่สมบูรณ์มากกว่า เมล็ดที่คลุกด้วย captan สำหรับเมล็ดพันธุ์ถั่วเหลืองที่เคลือบด้วย eugenol ร่วมกับ chitosan ให้จำนวนต้นที่ออกใกล้เคียงกับเมล็ดที่คลุกด้วย captan ในขณะที่ในเมล็ดพันธุ์ข้าวปริมาณการออกของเมล็ดที่เคลือบด้วย eugenol ร่วมกับ chitosan ดีกว่ากุ่มควบคุมแต่น้อยกว่าเมล็ดที่คลุกด้วย captan เล็กน้อย

เมื่อทดสอบประสิทธิภาพของเมล็ดกุ่มต่าง ๆ ในแปลงเกษตรกรรม พบว่าในเมล็ดพันธุ์ผักกาดหวานตุ้งที่เคลือบด้วย eugenol ให้จำนวนต้นอ่อนที่ใกล้เคียงกับเมล็ดที่คลุกด้วย captan แต่การเจริญของต้นอ่อนจากเมล็ดที่คลุกด้วย captan จะดีกว่า สำหรับเมล็ดพันธุ์ถั่วเหลือง จำนวนต้นอ่อนจากเมล็ดที่คลุกด้วย captan จะมีมากกว่าแต่น้ำหนักของต้นอ่อนจะใกล้เคียงกับกุ่มเมล็ดที่เคลือบด้วย eugenol ในขณะที่เมล็ดพันธุ์ข้าว จำนวนและน้ำหนักของต้นอ่อนที่เกิดจากเมล็ดที่เคลือบด้วย eugenol จะสูงกว่าเมล็ดที่คลุกด้วย captan

เมื่อตุ่ปะรดประสิทธิภาพผลผลิตของเมล็ดกุ่มต่าง ๆ พบว่าเมล็ดพันธุ์ข้าวที่เคลือบด้วย 1% eugenol ร่วมกับ chitosan ให้ผลผลิตเมล็ดข้าวสูงกว่ากุ่มปกติ และ captan สำหรับเมล็ดพันธุ์ผักกาดหวานตุ้งและถั่วเหลือง ไม่แสดงผลชัดเจนนอกจากนี้เมล็ดพันธุ์ที่เคลือบด้วย 1% eugenol ยังไม่แสดงผลต่อสารส่วนใหญ่ภายในเมล็ดพันธุ์ที่ถูกผลิตขึ้นจากแปลงเกษตรกรรม

การเข้าทำลายของแมลงและเชื้อร้ายต่อต้นพืชทั้งสามชนิดในแปลงเกษตรกรรม ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติระหว่างพืชที่เกิดจากเมล็ดที่เคลือบ คลุกด้วย captan และเมล็ดปกติ (กุ่มควบคุม) ไม่ว่าจะเป็นในเมล็ดพันธุ์ผักกาดหวานตุ้ง เมล็ดพันธุ์ถั่วเหลือง และเมล็ดพันธุ์ข้าว

เมล็ดพันธุ์ทั้ง 3 พืชเมื่อเคลือบด้วย 1% eugenol ร่วมกับ chitosan สามารถออกและเจริญเติบโตได้ดี รวมทั้งสามารถให้ผลผลิตทางเกษตรกรรมที่สะอาดปลอดภัยจากสารเคมีได้ ถ้าทุกขั้นตอนของการผลิตใช้แต่สารชีวภาพ เช่น น้ำ สารกำจัดแมลงชีวภาพร่วมกับเทคโนโลยีการเคลือบเมล็ดพันธุ์ที่ได้จากวิจัยนี้

The objective of this research was to develop the clean and hygienic seedling production by coating seed technology with natural plant extract which didn't affect the seed quality. Moreover, those seedlings should produce the clean and hygienic food without harmful residue. This research was studied at Department of Biology, Faculty of Science, Chiangmai University, Department of Agronomy, Faculty of Agriculture, Chiangmai University and University of Gottingen, Germany in the period of August 2004 to July 2008. The initial experiment was to study the biological activity of various plant extracts on brine shrimp (*Artemia salina* L.). It was found that *Stemona* spp. and *Eugenia caryophyllus* extracts had the most efficiency against brine shrimps. Moreover 1% eugenol could completely inhibit (100%) most of the test molds. However, eugenol extracted from *Eugenia caryophyllus*, gave the better result due to its 100% growth inhibition of molds at only 0.25%. In addition, eugenol also had a high insecticidal activity.

The soybean seeds coated with 1% eugenol showed good results of 100% seed ability with only 3.33% of mold contamination. In order to prolong the persistence of eugenol on coated seeds, polymer was used in the seed coating technique with the coating materials consisted of water, gracial acetic acid, food color and eugenol in the ratio of 95.2:1:0.7:1 by volume together with chitosan 2% and sodiumlignosulphonate 0.1%.

The study of activity against target molds for each plant in laboratory showed that pak-choi seeds coated with eugenol plus chitosan gave lower antifungal property than those mixed with captan, conversely, the germination percentage of seed mixed with captan was better. The results from soybean and rice seed coated with eugenol plus chitosan have a higher activity against phytopathogenic molds than those mixed with captan but gave the lower germination percentage. Nevertheless, 1% eugenol did not affect the major physical and chemical composition of seed. After 6-12 months storage of coated seed, the quality and production of vigor seedlings of seed coated with eugenol was not different from the non coated seed; in contrast, the seed mixed with captan led to less vigorous of normal seedlings.

For the antiinsect properties, the results showed both repellent and contact activity except for leaf eating beetle which have a repellent activity only.

The aflatoxin contamination after seed coating, it was found that both seeds coated with eugenol plus chitosan and seeds mixed with captan showed bigger number of contaminated seeds than those without coating. Owing to a higher amount of aflatoxin, it might be the effect of

moisture occurred on the surface of seed coat during the coating process allowing of the growth of aflatoxin-producing contamination molds.

The performance of coated seed in green house experiment was performed by cultivating the studied seeds in pots with appropriate ratio of phytopathogenic molds and soil. The results showed that pak - choi seeds coated with eugenol plus chitosan could germinate and gave better number of healthy seedlings than those mixed with captan. In soybean, germination of seeds coated with eugenol plus chitosan performed healthy seedlings as well as those mixed with captan. Whereas in rice, germination percentage of seeds coated with eugenol plus chitosan were higher than from non coated seeds and slightly lower than those mixed with captan.

The performance of the studied seeds in agricultural field showed no significant difference in the number of normal seedlings of pak-choi seeds coated with eugenol to those mixed with captan, but the latter gave higher numbers. On the other hand the soybean seeds mixed with captan showed higher number of normal seedlings than those coated with eugenol, but the total dry weight of both seeds were no significant different. In the case of rice seeds coated with eugenol resulted in higher seedling dry weight and number of normal seedlings than those mixed with captan.

Yield performance from all treated seed showed that rice coated with 1% eugenol plus chitosan promised higher yield than those mixed with captan and non coated seeds. Pak-choi and soy bean showed no clear picture in yield comparison. Moreover, 1% eugenol did not affect the major chemical components in production seed.

Insect pest invasion and phytopathogenic molds infection in agricultural field were no statistically significant difference among coated seeds, seeds mixed with captan and control seeds of pak-choi, soy bean and rice.

All of seedlings, pak choi seed, soy bean seed and rice seed, coated with 1% eugenol plus chitosan can germinate and well growth. The seed coating technology together with the use of bio-fertilizer and bioinsecticide in agriculture lead to the clean and hygienic agricultural product without chemical residue.