Thesis Title	Enzyme Amplified Labeling on Carbon Nanomaterials
	Application to Immunoassay
Thesis Credits	48
Candidate	Mr. Porramate Chumyim
Thesis Advisors	Dr. Mithran Somasumdrum
	Assoc. Prof. Dr. Werasak Surareungchai
Program	Doctor of Philosophy
Field of Study	Biotechnology
Department	Biotechnology
Faculty	School of Bioresources and Technology
Academic Year	2013

Abstract

Amplified labeling platforms consisting of layers of enzyme on carbon nanomaterials have been developed. The first label used tyrosinase immobilized on carbon nanotubes as an electrochemical label for immunoassay. The second label used a multienzyme system consisting of alkaline phosphatase and diaphorase immobilized on graphene nanoparticles for immunoassay.

The first amplified labeling platform was developed to enhance the ability of an electrochemical immunoassay. The platform consisted of multi-wall carbon nanotubes (MWNTs) supporting layers of the enzyme tyrosinase (TYR), which provide an amplification cycle due to substrate recycling at the electrode. The immobilization of multi-layered TYR on the surface of MWNTs by using stepwise layer-by-layer deposition was demonstrated. The optimal assay conditions were obtained after experimenting with the pH and applied potential. Two TYR layers on the MWNTs provide the maximum response towards catechol. The results indicated that the conjugation of MWNTs and TYR exhibited a high sensitivity toward the catechol substrate (320.8 mA.M⁻¹), with a short response time (2 s). Kinetics studies of the TYR on MWNTs toward catechol substrate were performed. The result found that k_{cat} / K_{M} was one order of magnitude less than the value for free tyrosinase. MWNTs-TYR conjugation was applied to labeling for an electrochemical immunoassay detecting Salmonella Typhimurium. Via rabbit anti-salmonella polyclonal antibodies. The results indicate that the system provide a detection limit for Salmonella Typhimurium approximately 340 CFU/mL in pure culture and 10^3 CFU/mL in milk samples (spike). The system also provide a colorimetric detection route by monitoring the absorbance of the enzyme product at 410 nm, and provide a detection for Salmonella Typhimurium of approximately 10³ CFU/mL.

The second nano-structured platform consisted of graphene nanoparticles (GO) and bienzyme layers of alkaline phosphatase (ALP) and diaphorase (DI) to enhance the detection ability for *Salmonella* Typhimurium detection. The immobilization of multilayer enzyme on the surface of GO was based on a stepwise layer-by-layer electrostatic deposition. The surface of GO allowed more enzyme molecules to absorb compared with MWNTs, based on optical measurements. The kinetics of GO/PAH/DI modified SPEs were investigated. k_{cat}/K_{M} of the enzyme could not be determined due to the unproportional response of the system towards PAP concentrations. The result of electrochemical study of the second nano-structured platform indicate that the response was not largely amplified and could not be applied to immunoassay.

Keywords: Alkaline phosphatase / Carbon nanotubes/ Diaphorase / Electrochemical Immunosensor / Enzyme recycling/ Graphene nanoparticles / Layer-by-layer / Tyrosinase

หัวข้อวิทยานิพนธ์	การใช้เอนไซม์ติคฉลากบนอนุภาคการ์บอนระดับนาโนเพื่อเพิ่ม
	สัญญาณการตรวจวัด ในการประยุกต์ใช้กับเทกนิกทางอิมมูโน
	วิทยา
หน่วยกิต	48
ผู้เขียน	นายปรเมษฐ์ ชุ่มยิ้ม
อาจารย์ที่ปรึกษา	คร.มิตรทราน โซมาซันครัม
	รศ.คร.วีระศักดิ์ สุระเรื่องชัย
หลักสูตร	ปรัชญาคุษฎีบัณฑิต
สาขาวิชา	เทคโนโลยีชีวภาพ
คณะ	ทรัพยากรชีวภาพและเทคโนโลยี
ปีการศึกษา	2556

บทคัดย่อ

งานวิจัยที่ศึกษาครั้งนี้มุ่งเน้นการพัฒนาตัวติดฉลากขยายสัญญาณการตรวจวัด ที่ประกอบด้วยชั้นของ เอนไซม์บนอนุภากการ์บอนระดับนาโนเมตร ตัวติดฉลากชิ้นแรกใช้เอนไซม์ไทโรซิเนสตรึงบน อนุภากการ์บอนนาโนทูปส์เพื่อใช้ในการตรวจวัดทางอิมมูโนวิทยาโดยอาศัยเทกนิกทางเกมีไฟฟ้า ตัว ติดฉลากชิ้นที่สองใช้เอนไซม์อัลกาไลน์ฟอสฟาเทสและไดอะเฟอเรสตรึงบนอนุภากกราฟีนระดับนา โนเมตรเพื่อใช้ในการตรวจวัดทางอิมมูโนวิทยา

ตัวติดฉลากเพิ่มสัญญาณตัวแรก ได้รับการพัฒนา เพื่อจุดประสงค์ในการเพิ่มขีดความสามารถในการ ตรวจวัดทางอิมมูโนวิทยาโดยอาศัยเทคนิคทางเคมีไฟฟ้า ซึ่งประกอบด้วยการ์บอนนาโนทูปส์ชนิด หลายชั้น (multi-wall carbon nanotubes) และชั้นเอนไซม์ไทโรซิเนส ซึ่งสามารถขยายสัญญาณได้โดย กุณสมบัติของการนำสารตั้งต้นกลับมาใช้ไหม่ที่ผิวหน้าอิเล็กโทรด การตรึงชั้นของเอนไซม์ไทโรซิเน สบนพื้นผิวของการ์บอนนาโนทูปส์โดยการใช้เทคนิคชั้นต่อชั้น (layer-by-layer) และได้ศึกษาหาค่า สภาวะที่เหมาะสมของเอนไซม์ต่อปัจจัยความเป็นกรดเบสและศักย์ไฟฟ้าที่ใช้ในการทดลอง จาก การศึกษาพบว่าไทโรซิเนสจำนวนสองชั้นบนพื้นผิวการ์บอนนาโนทูปส์ให้สัญญาณสูงสุดต่อสารตั้ง ด้นคาทิกอล และผลการทดลองบ่งชี้ว่าการตรึงเอนไซม์ไทโรซิเนสบนการ์บอนนาโนทูปส์นั้นมีความ ใวสูงต่อสารตั้งต้น (320.8 mA.M⁻¹) ภายในระยะเวลาสั้น (2 วินาที) จากการศึกษาจลนศาสตร์ของ เอนไซม์ไทโรซิเนสบนการ์บอนนาโนทูปส์ที่มีต่อสารตั้งต้นคาทิกอลพบว่า ค่า k_ณ / K_M ของเอนไซม์ มีก่าเลขยกกำลังน้อยกว่าเอนไซม์ไทโรซิเนสอิสระอยู่หนึ่งลำดับ เอนไซม์ไทโรซิเนสบนการ์บอนนา โนทูปส์ได้ถูกนำไปใช้เป็นฉลากในการตรวจวัดทางอิมมูโนวิทยาโดยอาศัยเทคนิดทางไฟฟ้าเคมีเพื่อ ตรวจวัดเชื้อซัลโมแนลลา โดยอาศัยแอนติบอดีต่อเชื้อซัลโมแนลลา ผลการทคลองบ่งชี้ว่าระบบ สามารถให้ก่าจำกัดของการตรวจวัด (LOD) เชื้อซัลโมแนลลาที่ 340 CFU/mL ของเชื้อซัลโมแนลลา ที่เพาะเลี้ยงในอาหารเลี้ยงเชื้อและ 10³ CFU/mL ในตัวอย่างนมที่เติมเชื้อ นอกจากนี้ระบบติดฉลากยัง สามารถให้ผลการตรวจวัดทางแสงโดยการวัดก่าการดูดกลืนแสงของผลิตภัณฑ์ที่เกิดจากเอนไซม์ที่ ความยาวกลื่น 410 นาโนเมตร จากผลการทดลองพบว่าการตรวจวัดโดยวิธีทางแสงต่อเชื้อซัล โมแนลลาให้ก่าจำกัดการตรวจวัดที่ 10³ CFU/mL

ตัวติดฉลากที่เป็นโครงสร้างระดับนาโนเมตรตัวที่สองประกอบด้วย อนุภาคกราฟีนระดับนาโนและ เอนไซม์สองชนิดคืออัลคาไลน์ฟอสฟาเทส (ALP) และใดอะเฟอเรส (DI) เพื่อใช้เป็นตัวเพิ่ม ความสามารถในการตรวจวัดเชื้อซัลโมแนลลา การตรึงเอนไซม์สองชนิดบนอนุภาคกราฟีนอาศัย เทคนิคชั้นต่อชั้น (layer-by-layer) เพื่อให้เกิดการจับกันแบบไฟฟ้าสถิต จากการใช้การตรวจวัดทาง แสงพบว่าพื้นผิวของอนุภาคกราฟีนนั้นมีผลทำให้เอนไซม์เข้าจับตัวบนพื้นผิวของกราฟีน มากกว่า พื้นผิวของการ์บอนนาโนทูปส์ ผลจากการศึกษาจลนศาสตร์ของเอนไซม์ไดอะเฟอเรสบนกราฟีนที่ ตรึงลงบนอิเล็กโทรดพบว่ามีความไม่สัมพันธ์กันของสัญญาณที่ตอบสนองต่อความเข้มข้นของสารตั้ง ด้น (PAP) ผลการทดลองพบว่าตัวติดฉลากตัวที่สองที่ประกอบด้วยอนุภาคกราฟีนระดับนาโนร่วมกับ เอนไซม์สองชนิดไม่สามารถขยายสัญญาณเพิ่มได้ และไม่สามารถนำไปใช้เป็นตัวติดฉลากในการ ตรวจวัดทางอิมมูโนวิทยาโดยอาศัยเทคนิกทางเกมีไฟฟ้า

คำสำคัญ : กราฟีนนาโนพาร์ทิเคิล / คาร์บอนนาโนทูปส์ / ใดอะเฟอเรส / เลเยอร์บายเลเยอร์ / ไทโร ซิเนส / อัลคาไลน์ ฟอสฟาเทส / เอนไซม์ รีไซเคิล / อิเล็กโตรเคมิคัล อิมมูโนเซนเซอร์

ACKNOWLEDGMENTS

It would not have been possible to write this doctoral thesis without the help and support of the kind people around me. First and foremost, I offer my sincerest gratitude to my supervisor, Dr. Mithran Somasundrum, who has been patiently providing me with support throughout the eight years of my study and research. Thank you for believing in me for so many years. You have indeed been most kind, intelligent and a great writer.

To Assoc. Prof. Dr. Werasak Suraruengchai, my co-supervisor, I'm extremely grateful for the advice, support and kindness, which has been invaluable on both academic and personal levels. I remembered since the first time I met you in the interview room, I felt you are someone special, and that makes me privileged to be one of your advisees over since. You have faithfully seen me through the entire process. I'm also grateful for the many opportunities you have provided to undertake new roles and responsibilities such as being a chair of conference, a teacher, a mentor and many more. I truly appreciate your patience and the breaks you have given me which allowed me to take a mentally and physically refreshing tour of Korea and my hometown.

I would also like to acknowledge my formal mentor, Dr. Patsamon Rijiravanich, for her encouragement and effort. Without her, this thesis and my work would not have been completed or written. To Dr. Patsamon Rijiravanich, thank you so much the chances you have given me, and your many years of mentoring. You amaze me with your strength and toughness, but yet you have been incredibly kind.

I gratefully acknowledge a Ph.D. program from the Royal Golden Jubilee project of the Thailand Research Fund (TRF) for the financial support. I would also like to thank Fulbright Scholarship for helping arrange my VISA and my insurance. This project was also funded by the Higher Education research promotion and National Research University Project of Thailand (Office of the Higher Education Commission).

I am also very grateful to Prof. Pulickel Ajayan, Professor of Research & Group leader, nomaterials Laboratory, School of Mechanical Engineering, Rice University, Houston, Texas, USA for internship opportunities in this group, a warm welcome, and guide me for 6 months in USA.

I would like to give many thanks to my family, my grandmother who raised me, my father, my mother, my younger brother and all of my cousins. Even though they may not fully understand what I have been doing throughout these years, their endless and unconditional support has been invaluable. I'll also like to thank my biological father, who passed away when I was at the age of one. To dad, though I have never had the chance to speak with you before, I would like to thank you for bringing me into the world. Mom is healthy and she is the strongest woman I have ever known. I promise to take good care of her. Many people say that I resemble you closely. Thanks dad!

I would like to share my deepest gratitude to the love of my life, Dr. Pathanin Chantree, who has stood by me every single day. To Dr. Pathanin Chantree, thank you for

everything you have done for me, your warmth, your kindness, your indescribable love that has constantly kept me going. I am truly happy and fortunate to have you, holding my hand and walking with me in this path. I love you and I always will.

I also wish to express my thanks to one of my dearest friend, Mr. Nattapon Thanintorn, who has been constantly helping, supporting, and motivating me for many years. To Mr. Nattapon Thanintorn, thank you so much for your endless support. You have been there for me all the time, even throughout the toughest hardships. You have always encouraged me and motivated me. Our trip together was one of the best moments of my life. Thank you so much.

I would like to express my deepest gratitude to Miss Panwipa Supathanapat, for her unconditionally love, care, kindness and unbelievable support. She has always been there especially the hardest time of my life. Her unbelievably energy has always been passing to me and I am grateful for everything she has done for me.

Last but not least, many thanks to all my friends and SST members, for your friendship and support. Thanks to all my fans and followers on Facebook who have been activity reading, commenting and sharing great ideas for my articles. Thanks to all of my students who have been studying in my school ever since I start the job as a tutor. Keep striving for excellence.

This thesis would not have been possible without each and every one of you and I would like to express my deepest heartfelt gratitude.

CONTENTS

EN	GLISH A	BSTRACT	i
TH	IAI ABST	TRACT	iii
AC	CKNOWL	EDGEMENTS	v
CC	NTENTS		vii
LIS	ST OF TA	BLES	x
LIS	ST OF FI	TURES	xi
NC)ΜΙΝΔΤΙ	ON SYMBOLS	vv
TIC	$T \cap F \wedge C$	PONVMS	
		CROIVENDS	Λ V Ι
СТ	IADTED		
	IALIEN INTDO	DUCTION	1
1.		DUCTION	⊥ 1
	1.1	Objectives	1
	1.2	Objectives Outline of the discortation	
	1.5	Outline of the dissertation	Z
2	I ITED	ATHDE DEVIEW	4
4.		Immunoassays and Immunosensors	4 1
	2.1 2 1 1	Biosensor Technology	4
	2.1.1 2 1 2	Immunosensors	
	2.1.2 2.1.3	Flactrochamical Immunosansors	5
	2.1.3 2.1.4	Mass-Detecting Immunosensors	07
	2.1.4	Optical Immunosensors	7 7
	2.1.5	Nanostructured Materials for Electrochemical	8
	2.1.0	Immunosensors	0
	22	Label-Free and Label-Based Electrochemical Biosensors	9
	2.2	Label-Free Electrochemical Biosensors	9
	2.2.1 2 2 2	Label-Based Electrochemical Immunosensors	10
	2.2.2	Enzyme-Nanoparticle Label Based Electrochemical	10
	2.5	Immuno-sensors	11
	2.4	Carbon Nanostructures for Enzyme Label Based	17
	2.1	Immunosensors	17
	2.4.1	Carbon Nanotubes	17
	2.4.2	Graphene and Graphene Oxide	21
	2.5	Signal Amplification by Enzyme-Substrate Recycling	25
		Systems	-
	2.5.1	Recycling the Electrochemically-Transformed Compound	25
	2.5.2	Using a Bi-Enzymatic System	26
	2.6	Layer by layer deposition: Theory	27
	2.7	Methods Used in Electrochemistry	28
	2.7.1	Cyclic Voltammetry	28
	2.7.2	Differential Pulse Voltammetry	29
	2.7.3	Amperometry	30
		-	

3.	TYROS	INASE MULTILAYER-FUNCTIONALISED	32
	CARBO	N NANOTUBES AS ELECTROCHEMICAL	
	LABELS	S: APPLICATION TO IMMUNOASSAY	
	3.1	Introduction	32
	3.2	Experimental	34
	3.2.1	Materials	34
	3.2.2	Apparatus	34
	3.2.3	Construction of MWNT-[PAH/Tyr] Labels	35
	3.2.4	Determination of enzyme concentration on MWNTs	35
	3.2.5	Preparation of Salmonella Typhimurium Cells	35
	3.2.6	Electrochemical immunoassay for Salmonella detection	36
		(pure culture)	
	3.2.7	Electrochemical immunoassay for Salmonella Typhimurium	37
		detection (in food sample)	
	3.2.8	Immunoassay detection of Salmonella Typhimurium by	38
		using colorimetric assay	
	3.3	Results and Discussion	39
	3.3.1	Construction of Tyr-MWNT Labels	39
	3.3.2	Determination of Tyr concentration on MWNTs	39
	3.3.3	Characterization of the labeling using SEM	39
	3.3.4	Cyclic voltammetry of catechol and o-benzoquinone	43
	3.3.5	Effect of the applied potentials to current response	44
	3.3.6	Effect of working pH on current response	45
	3.3.7	Effect of number of bi-layers on amperometric response	46
	3.3.8	Amperometric response of MWNT-(PAH/ Tyr) ₂	47
	3.3.9	Kinetics of MWNT-[PAH/Tyr] _n Response	48
	3.3.10	Salmonella Immunoassay Using MWNT-[PAH/Tyr] ₂ Labels	54
	3.3.10.1	Effect of incubation time to current response	54
	3.3.10.2	Effect of scan rates to current response	55
	3.3.10.3	Calibration curve of <i>Salmonella</i> Typhimurium (pure culture)	55
		detection by electrochemical immunoassay	
	3.3.10.4	Calibration curve of <i>Salmonella</i> Typhimurium (spike in milk	59
		sample) detection by Electrochemical Immunoassay	
	3.3.11	Calibration curve of <i>Salmonella</i> Typhimurium (pure culture)	60
		detection by Colorimetric immunoassay	
	3.4	Conclusions	62

4.	BI-ENZ	YMATIC LAYERS IMMOBILIZATION ON	63
	GRAPH	IENE NANOPARTCLES FOR ULTRASENSITIVE	
	DETEC	CTION OF Salmonella Typhimurium	
	4.1	Introduction	63
	4.2	Materials and Methods	65
	4.2.1	Chemicals and materials	65
	4.2.2	Electrochemical measurements	65
	4.2.3	Construction of the (GO/PAH/ALP/PAH/DI) _n -avidin/biotin- pAb labeling	66
	4.2.4	Preparation of Salmonella Typhimurium	67
	4.2.5	Electrochemical Immunoassay for <i>Salmonella</i> Typhimurium Detection	67
	4.3	Results and Discussion	68
	4.3.1	Multi-layers enzymes construction on GO	68
	4.3.2	Determination of enzyme concentration on GO compare to SWNTs	69
	4.3.3	Electrochemistry of p-ammophenyl phosphate and p- aminophenol	70
	4.3.4	Study catalytic response by using cyclic voltammetry (CV)	71
	4.3.5	Study amplification response by using differential pulse voltametry	72
	4.3.6	Study of amplification response by using amperometry	73
	4.3.7	Effects of scan rates to amplification response	74
	4.3.8	Kinetics study of immobilized diaphorase on graphene oxide	75
	4.3.9	Response of (GO/PAH/ALP/DI) _n labels	80
	4.4	Conclusions	82
5.	CONCI	LUSIONS	83
RE	FEREN	CES	85
cu	RRICUI	LUM VITAE	99

LIST OF TABLES

TABLE									PAGE
3.1	Comparison	of	electrochemical	method	based	on	Tyr	and	57
	nanoparticle	label	S						

4.1 List of multi-enzyme system based on substrate recycling principle 63

LIST OF FIGURES

FIGURE		PAGE
2.1	Components of a biosensor.	5
2.2	Diagrammatical representation of an immunosensor device	5
2.3	Streptavidin-modified magnetic particles with magnetized carbon SPE for use as an immunosensors	8
2.4	Silver amplification of biobarcode labelling for immuno- detection on SPE	9
2.5	Depiction of label-free voltammetric immunosensors	9
2.6	Depiction of label-free immunosensors using single-walled carbon nanotubes (SWCNTs)	10
2.7	Depiction of an immunosensor to detect SCCA	11
2.8	Depiction of multiprotein electrical detection based on inorganic colloid nanocrystaltracers	12
2.9	Depiction of a magnetic sandwich immunoassay	13
2.10	Depiction of immunoassay formats applying amperometric detection.	14
2.11	Depiction of the preparation procedure for bi-functional MSN and its use in immunoassay	15
2.12	Fabrication process of the HRP-anti-CEA-NGGN bio- nanolabel	16
2.13	Depiction of (A) Preparation procedure of GOD-Au Nps/CNTs-Ab2 Tracer and (B) Preparation of immunosensors and sandwich-type electrochemical immunoassay	16
2.14	Depiction of a number of physical structures of CNTs	18
2.15	Depiction of a single-walled carbon nanotube (SWCNT) and a multi-walled carbon nanotube (MWCNT)	19
2.16	Depiction of the analytical protocol	20
2.17	Depiction of the LBL electrostatic self-assembly of a protein- polyion on carbon nanotube template	21
2.18	Depiction of the structure of a single graphene sheet	22
2.19	Chemical structure of graphene oxide	22
2.20	Depiction of the preparation of Gr-PAMAM-anti-AFP-HRP and the sandwich-type ELISA procedure based on signal amplification	23
2.21	Depiction of an electrochemical immunosensor	31
2.22	Depiction of an immunosensor used to detect clenbuterol	25

FIGURE

2.23	Depiction of the catalytic cycle using an enzymatic amperometric bio-electrode and an electrochemical mediator to	26
	regenerate the original oxidation state of the enzyme redox site	•
2.24	Depiction of a bi-enzymatic amperometric biosensor	26
2.25	Typical excitation signal for cyclic voltammetry-a triangular potential waveform	28
2.26	Voltammogram of a single electron oxidation-reduction	29
2.27	Potential form and resulting simulated voltammogram in differential pulse voltammetry	30
2.28	Amperometric response of the biosensor for successive additions of 0.05 M and 0.1 M bisphenol A into stirring PBS	31
3.1	Depiction of tyrosinase mono-enzymatic recycling system	33
3.2	Depiction of layer-by-layer electrostatic self-assembly of Tyr on MWNTs	35
3.3	Depiction of electrochemical immunoassay using (MWNTs/PAH/Tyr) _n labels on micro well plate	37
3.4	Depiction of colorimetric immunoassay detection of <i>Salmonella</i> Typhimurium	38
3.5	SEM image of unmodified MWNT (1)	40
3.6	SEM image of unmodified MWNT (2)	40
3.7	SEM image of unmodified MWNT (3)	41
3.8	SEM image of MWNT modified by two $[PAH/Tyr]_n$ (1)	41
3.9	SEM image of MWNT modified by two $[PAH/Tyr]_n$ (2)	42
3.10	SEM image of MWNT modified by two $[PAH/Tyr]_n$ (3)	42
3.11	Cyclic voltamogram of 5 mM catechol solution in PBS pH 7.0	43
	containing 0.1 M KCl. The voltametry was made at 50 mV.s ⁻¹ using a glassy carbon electrode (BAS)	
3.12	Hydrodynamic voltammogram for the response of MWNT-	44
	[PAH/Tyr] ₂ -coated screen printed electrodes to 4.0 µM	
	catechol. Error bars show ± 1 stdev (n = 3). Each	
	determination was made with a different electrode	
3.13	Amperometric response of Tyr-MWNTs to various pH working	45
	solutions ranging from 4-9. Amperometry was conducted under	
	0.5 M PBS buffer containing 0.1 M KCl in different values of	
	pH, under stirred conditions	
3.14	Relationship between numbers of bi-layers (PAH- Tyr) on	46
	MWNTs and current responses	
3.15	Linear response of MWCNTs/PDDA/Tyr ₂ for catechol.	47
	Experimental condition: 0.2 uM of catechol, 0.1 M PBS + 0.1	
	M KCl, potential -0.2 V. Inset : Amperometric response of	
	MWCNTs/PDDA/Tyr 2 for catechol.	
3.16	Amperometric response to 4.0 µM catechol at -0.20 V vs	51
	Ag/AgCl using screen printed electrodes modified by MWNT-	
	[PAH/Tyr] ₂ coatings of varying film thickness (nm)	

FIGURE

PAGE

3.17	Calibration of catechol using MWNT-[PAH/Tyr] ₂ films of 390 nm and 60 nm	51
3.18	Differential pulse voltammetric (DPV) peak heights generated by MWNT-[PAH/Tyr] ₂ labels incubated in microwell plates with 10 mM catechol for varying periods before measurement. Currents are normalised relative to the peak current in the absence of enzyme. DPV conditions: Step potential = 0.6 mV , pulse interval = 0.125 s , modulation amplitude = 0.05 V	54
3.19	DPV peak heights generated by MWNT-[PAH/Tyr] ₂ labels incubated in microwell plates with 10 mM catechol for 2 mins before measurement. Currents are normalised relative to the peak current in the absence of enzyme at the relevant scan rate	55
3.20	DPV determination of heat-killed <i>Salmonella</i> Typhimurium (scan rate = 5 mV s ⁻¹) by direct ELISA using MWNT- [PAH/Tyr] ₂ labels incubated in microwell plates in the presence of 10 mM catechol for 2 mins	56
3.21	Current response of <i>Salmonella</i> Typhimurium detection in milk sample using electrochemical enzyme labeling (error bars represent 3 replicate experiments)	59
3.22	The absorbance of benzoquinone (dot line) at 410 nm, a product from the reaction between tyrosinase enzyme and catechol, compare with the absorbance of catechol without tyrosinase (solid line)	60
3.23	The calibration plot of S. Typhimurium by using MWNTs- Tyr labelling system (b) error bars represent 3 replicate experiments	61
4.1	Depiction of ALP/DI multi-enzymatic recycling system	64
4.2	Depiction of layer-by-layer deposition of bi-enzyme on graphene nanoparticles	66
4.3	Depiction of electrochemical immunoassay using (GO/PAA/ALP/DI)n labels on micro well plate	68
4.4	Absorbance change of ALP solution before and after immobilization on to GO and SWNTs (n=3)	69
4.5	Cyclic voltammograms obtained in 0.1 M PBS containing 0.1 M KCl (pH 8.0) scan rate 50 mV/s. Red line is PBS buffer. Blue line is 1 mM pAPP. Green line is 1 mM pAPP in the presence of Alkaline phosphatase.	70
4.6	Cyclic voltammograms obtained in 0.1 M PBS containing 0.1 M KCl pH 7.0 scan rate 50 mV/s.	71

FIGURE

4.7	DPV obtained in 0.5 M PBS containing 0.1 M KC1 pH 7.0 scan rate 50 mV/s	72
4.8	Amperometric response of ALP and DI modified (drop-dried) SPEs electrode with successive injection of 2 uM (left) and 20 uM (right) pAPP at an applied potential 0.2V. in 0.5 M PBS	73
4.9	Voltammograms obtained at different scan rates (from inner to outer): 5,10, 20, 50, 80, 100 mV/s. in 0.1 M PBS buffer (pH 8.0) containing 0.1 mM PAPP, 1 mM NADH and 10 unit of ALP (A) and 10 unit of ALP with DI (B)	74
4.10	Current response obtained (A) and normalized current (B) at different scan rates using cyclic voltametry: 5,10, 20, 50, 80, 100 mV/s.	74
4.11	Cyclic voltamograms of bare SPE (red) and modified SPE with GO/PAH/DI layer-by-layer immobilization (blue) toward 2 mM NADH and 0.952 mM PAP. Scan rates 2.5 mV/s	76
4.12	Cyclic voltamograms of bare SPE (red) and modified SPE with GO/PAH/DI (green) towards 2 mM NADH with various concentration of PAP, 40,20,10,5,2.5,1 μ M (A-F), respectively.Scan rates 2.5 mV/s.	77
4.13	Cyclic voltamograms of modified SPE with GO/PAH/DI towards 2 mM NADH and 35 µM PAP. Scan rates 2.5 mV/s	78
4.14	Plot of the reciprocal of the catalytic plateau current obtained at GO/PAH/DI modified SPE as a function of reciprocal of PAP concentration. NADH concentration was in excess of 2 mM in PBS buffer (pH 7.0). Scan rate: 2.5 mV/s.	78
4.15	Plot of the catalytic plateau current obtained at GO/PAH/DImodified SPE, 2 μ L and 5 μ L, as a function of of PAP concentration. NADH concentration was in excess of 2 mM in PBS buffer (pH 7.0). Scan rate: 2.5 mV/s	79
4.16	DPV of $(GO/PAH/ALP/DI)_1$ label drop-dried on SPE towards 0.1 mM PAPP (red) and 0.1 mM PAPP and NADH (blue). Scan rate 20 mV s ⁻¹ and 2 min incubation time	80
4.17	DPV of response of $(GO/PAH/ALP/DI)_4$ label (fixed amouth in microplate) towards 0.1 mM PAPP and 0.1 mM NADH . Scan rate 20 mV s ⁻¹ and 2 min incubation time.	81

NOMINATION SYMBOLS

C_E	enzyme concentration	$mol L^{-1}$
C _c	catechol concentration	$mol L^{-1}$
D	diffusion coefficient	$\mathrm{cm}^2\mathrm{s}^{-1}$
E	potential	V
E _{pc}	cathodic peak potential	V
E _{pa}	anodic peak potential	V
i _{pc}	cathodic peak current	А
Ī	electric current	А
L	thickness	m
t	time	S
V_{ss}	reaction rate	$V s^{-1}$
V	voltage	V
$k_{\rm cat}$	turnover number	s ⁻¹
K _M	the Michaelis constant	$mol L^{-1}$

LIST OF ACRONYMS

ALP	alkaline phosphatase
Ab	antibody
Ag	antigen
Ag/AgCl	silver/silver chloride reference electrode
BSA	bovine serum albumin
Ca	catechol
CNTs	carbon nanotubes
CV	cyclic voltemmetry
CVD	chemical vapor deposition
DPV	differential pulse voltammetry
DNA	deoxyribonucleic acid
ELISA	enzyme linked immunosorbent assay
EIA	enzyme immunoassay
GO	graphene oxide
DI	diaphorase
IgG	lmmunoglobulin G
LOD	limit of detection
LBL	layer-by-layer
MWNTs	multi-walled carbon nanotubes
MWCNTs-COOH	multi-walled carbon nanotubes carboxylic acid
	functionalized
NADH	nicotinamide adenine dinucleotide
PBS	phosphate buffer solution
PAH	poly allylamine hydrochloride
PAPP	para-amiophenylphosphate
PQI	para-Iminoquinone
SWNTs	single-walled carbon nanotubes
SPE	screen-printed carbon electrodes
SEM	scanning electron microscopy
SDS	sodium dodecyl sulfate
Tyr	tyrosinase
TMB	3,3',5,5'-tetramethylbenzidine
UV-vis	ultraviolet-visible
WE	working electrode