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CHAPTER 3 METHODOLOGY 

 
This chapter reveals the space discretization by the MLPG5 and MLPG4 methods, 

which are developed based on MKA and RPIM, subjected to the Dirichlet and Neumann 

boundary conditions. The Euler, Runge-Kutta and Crank-Nicolson methods are used for 

temporal discretization. 

 

3.1 Space Discretization by MLPG Method with a Heaviside Step Test  

Function (MLPG5) 

The local integral formulation of equation (2.1) can be written as:  
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where    is a Heaviside step  used as the test function: 
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 (3.3) 

u and   are trial functions, and  instead of the entire domain    we have considered a 

sub-domain   
  located entirely within domain       (   )     R2 .The domain   

is enclosed by           with boundary conditions: 

       ̅   and      ̅    on     ,                                         (3.4) 

      ̅   and          ̅     on                                                (3.5) 

where   (     ) 
  is an outward unit normal of the boundary and     

  

  
 .  The 

condition (3.4) is often referred to as the Dirichlet boundary condition; and (3.5) as the 

Neumann boundary condition.  

 

We can integrate it by part, by using 

        (    )        , 
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   in Eq.(3.1) can be written as: 
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By divergence theorem, the first term on the right hand of equation (3.1) becomes 
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Similarly, the first term on the right hand of equation (3.2) becomes 
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where    
    

     
     

    is the boundary of   
 ,    (     )

  is the outward unit 

normal to the boundary     
     and        is  the normal derivative, i.e., the derivative 

in the outward normal direction to the boundary    . Recall that derived local integral 

equations do not involve any gradients of the field variables. This is very appropriate 

from the point of view of meshless approximations, because of saving the 

computational time and decreasing the inaccuracy due to derivatives of field variables.  

Let  ̃(   ) and   ̃(   ), which substitute  (   ) and   (   )  respectively, be the trial 

solutions. 
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                               ̃   ( ̃(   )  ̃(   )),       ̃   ( ̃(   )  ̃(   )).                    (3.7) 

For internal nodes, from local integral equations (3.1) and (3.2),         and using the 

MKA or RPIM (Eqs.(2.9) or (2.24)), we have the following nonlinear equations: 
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The following abbreviations have been used for the integral term: 
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The boundary and domain integrals are calculated by using the Gauss-Legendre 

quadrature  method. We can rewrite Eqs. (3.8) and (3.9) as: 
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Temporal discretization 

Eqs. (3.10) and (3.11) can be transformed into vector form as: 
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Similarly, we have 
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where 
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The finite-difference approximation of the time derivatives of Eqs. (3.12) and (3.13) in 

the Euler method is given as follows: 
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 ,                                              (3.14) 
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In case of the RK’s method, Eqs.(3.12) and (3.13) can be rewritten 
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In case of the Crank-Nicloson  method, Eqs.(3.12) and (3.13) can be rewritten as: 
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In case of the Euler and the Runge-Kutta methods,   ̂    and   ̂    can be solve in Eqs. 

(3.14) , (3.15) ,(3.16) and(3.17), respectively. For the Crank-Nicolson method, because 

of   and   are nonlinear functions of   and  , we solve them iteratively in each time 

step with replacing      and     by     and   , respectively, at zeroth iteration. 

Eqs.(3.20) and (3.21) are converted into a set of nonlinear algebraic equation for 

unknowns  ̂   and  ̂   . 
  

3.2 Space Discretization by MLPG Method with The Fundamental  

Solution Test Function (MLPG4) 

Let     of Eqs.(3.1) and (3.2) is surrogated   
 , where   

  is a test function,   and   are 

trial functions, and  instead of the entire domain    we have considered a sub-domain 

  
  located entirely domain   which is circle of radius     and centered at node  

   (   )    R2. 

 

It is well known that      (    )   ( )     is fundamental solution corresponding 

to Poisson’s equation, i.e.,       (   )     where   is an arbitrary 

constant,  (   )  is the Dirac delta function and r is the distance the field and source 

points, i.e.,           . If we choose   (   ⁄ )   (  ) where    is the radius of 

circular sub-domain   
  center at point    , then the modified fundamental solution to 

Poisson’s equation can be given by 
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We can integrate it by part, by using 
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   in Eq.(3.1) can be written as: 
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By divergence theorem, the first term on the right hand of equation (3.23) becomes 
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where    
    

     
     

    is the boundary of   
 ,    (     )

  is the outward unit 

normal to the boundary     
     and        is  the normal derivative, i.e., the derivative 

in the outward normal direction to the boundary    . Recall that derived local integral 

equations do not involve any gradients of the field variables. This is very appropriate 

from the point of view of meshless approximation because of saving the computational 

time and decreasing the inaccuracy due to derivatives of field variables. Since   
   

vanishes on   
  ,       ̅ .  

We can integrate it by part, by using 
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Eq. (3.24) becomes 
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Since       (   )    , the equation (3.26) becomes 
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By divergence theorem, Eq. (3.27) can be written as: 
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Similarly, we have 
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(3.29) 

 

The local integration equation of (3.28)  and  (3.29) can be written as: 
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(3.30) 
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Let  ̃(   ) and  ̃(   ) are the trial solution and. We define   (   )   ̃(   )   and 

  (   )   ̃(   ).  The Eqs. (3.30)  and (3.31) can be written as: 
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For internal nodes, from local integral equations (3.1) and (3.2), and using the MKA or 

RPIM (Eqs.(2.9) or (2.24)), we have the following nonlinear equations: 
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(3.34) 

 Similarly, we have  
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The following abbreviations have been used for the integral terms: 
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The boundary and domain integrals are calculated by using the Gauss-Legendre 

quadrature  method. We can rewrite the Eqs. (3.34)  and (3.35) as: 
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The Eqs. (3.36) and (3.37) can be written in vector form as: 
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 In case of Euler’s method, the Eqs.(3.38) and (3.39) become 
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 ̂     and    ̂     can be solved in Eqs. (3.40) and (3.41) 

   


