CHAPTER 3 METHODOLOGY

This chapter reveals the space discretization by the MLPG5 and MLPG4 methods,
which are developed based on MKA and RPIM, subjected to the Dirichlet and Neumann
boundary conditions. The Euler, Runge-Kutta and Crank-Nicolson methods are used for
temporal discretization.

3.1 Space Discretization by MLPG Method with a Heaviside Step Test

Function (MLPG5)
The local integral formulation of equation (2.1) can be written as:
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where w; is a Heaviside step used as the test function:
1, x€ql
x) = _ 3.3
w(x) {0, x2Ql, (33)

u and v are trial functions, and instead of the entire domain Qg we have considered a
sub-domain Q% located entirely within domain Q, x = (x,y)T € Qc R2 .The domain Q
isenclosed by I' = ', U I'y, with boundary conditions:

u=u and v=v onlp, (3.4

n-Vu=gq, and n-Vv=gq, on Iy, (3.5

where n = (ny,n,) T is an outward unit normal of the boundary and Vu = Z—Z . The

condition (3.4) is often referred to as the Dirichlet boundary condition; and (3.5) as the
Neumann boundary condition.

We can integrate it by part, by using
Viuw; = V- (Vuw;) — Vu - Vw;,

fﬂg(vzu)wl-dﬂ in Eq.(3.1) can be written as:
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f (V2ww;dQ = f (V- (Vuw))dQ — f (V) - (Vw;)d Q.
04 0% 0f
By divergence theorem, the first term on the right hand of equation (3.1) becomes

ou
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Similarly, the first term on the right hand of equation (3.2) becomes

ov
—w;dl— (Vu) (Vw,)d Q,

f (V20)w;dQ =
ak a0k on

where 9% = [L UTL, UTE, isthe boundary of i, n = (ny,n,)7 is the outward unit
normal to the boundary 9%, and du/dn is the normal derivative, i.e., the derivative
in the outward normal direction to the boundary 9(),. Recall that derived local integral
equations do not involve any gradients of the field variables. This is very appropriate
from the point of view of meshless approximations, because of saving the
computational time and decreasing the inaccuracy due to derivatives of field variables.

Let ©i(x, t) and ¥(x,t), which substitute u(x,t) and v(x,t) respectively, be the trial
solutions.

20 = ) ¢80, HED = ¢ @), (3.6)
j=1 j=1
A=A 1), 5(xt), B=B(ilx1),¥(x1)). (3.7)

For internal nodes, from local integral equations (3.1) and (3.2), Vw; = 0 and using the
MKA or RPIM (Egs.(2.9) or (2.24)), we have the following nonlinear equations:
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The following abbreviations have been used for the integral term:
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The boundary and domain integrals are calculated by using the Gauss-Legendre
guadrature method. We can rewrite Egs. (3. 8) and (3.9) as:

o;
Zku == Zh U fir, (3.10)
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N
Zku — z 20, + L2,) + . (3.11)

]:1 =
Temporal discretization

Egs. (3.10) and (3.11) can be transformed into vector form as:

=

K%—It] =H.U + F,. (3.12)
Similarly, we have
KZ—‘Z = H,V + LU + F,, (3.13)
where
K = [kl o H1 =il o Ha =[5 L=l F1 = lfilwxa
Fy = [folnxi U= [0y 0, - @y], and V= [, D, - Dy]'.

The finite-difference approximation of the time derivatives of Egs. (3.12) and (3.13) in
the Euler method is given as follows:

KU**' = (K + AtH,)U* + AtF¥, (3.14)
KVt = (K + AtH,)V* + At(LU* + F%), (3.15)

In case of the RK’s method, Egs.(3.12) and (3.13) can be rewritten

oU _ N
K== =H0+F, = G1(0,t), (3.16)
ov o N
K—=-=HV + LU +F; = G, (0, V,¢1), (3.17)
hence
—~ - At
KUk+1 = KUk + ?(511 + 2521 + 2531 + 541), (318)
At
KVk+1 KVk + - (512 + 2522 + 2532 + 542) (319)
where

S11= Gl(ﬁlf tl) , S12 = Gz(ﬁp ?1'1:1)'
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— At At — At N At At
S21 =Gy <U1 + 7511,% + 7) , S22 =Gy <U1 + 7512"/1 + 7512: ty + 7):

- At At . At . At At
S31 =Gy (U1 + 7521» t + 7) , S32 =Gy <U1 + 7522' Vi+ 7522» t + 7)'

541 = Gl(ﬁl + AtS31, tl + At) , 542 = GZ(ﬁl + AtS32, Vl + Athz, tl + At),

In case of the Crank-Nicloson method, Egs.(3.12) and (3.13) can be rewritten as:

(2K — AtH,)U**t = (2K + AtH,)U* + At(F¥** + FY), (3.20)

(2K — AtH,)V**! = (2K + AtH,)V* + At(LU*! + LU¥)
(3.21)
+At (F5' + F5).

In case of the Euler and the Runge-Kutta methods, U**1 and V**1 can be solve in Egs.
(3.14) , (3.15) ,(3.16) and(3.17), respectively. For the Crank-Nicolson method, because
of A and B are nonlinear functions of u and v, we solve them iteratively in each time
step with replacing A¥*1 and B**lby A* and B*, respectively, at zeroth iteration.
Egs.(3.20) and (3.21) are converted into a set of nonlinear algebraic equation for
unknowns U*+1and 7*+1,

3.2 Space Discretization by MLPG Method with The Fundamental
Solution Test Function (MLPG4)

Let w; of Egs.(3.1) and (3.2) is surrogated u;, where u; is a test function, u and v are
trial functions, and instead of the entire domain Q  we have considered a sub-domain
QL located entirely domain Q which is circle of radius 7, and centered at node.

x = (x,y) € QcRz2,

It is well known that u* = —(1/27) In(r) + C is fundamental solution corresponding
to Poisson’s equation, ie., V?u*+d8(x,y)=0, where C is an arbitrary
constant, §(x, y) is the Dirac delta function and r is the distance the field and source
points, i.e., r; = ||lx — x;|| . If we choose C = (1/27) In(ry) where 1y is the radius of
circular sub-domain Q. center at point x;, then the modified fundamental solution to
Poisson’s equation can be given by

u. =

Viuu* = V- (Vuw)) — Vu - Vu, (3.22)

fﬂé(vzu)uz‘dﬂ in EQ.(3.1) can be written as:
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(V2Wu;dQ = f (V- (Vuu)))da — f (VW) - (Vu))d Q. (3.23)
ol ot Qg

By divergence theorem, the first term on the right hand of equation (3.23) becomes

(V2u)u;dQ =f 'Z—Zuz‘df— (V) - (Vu))d Q, (3.24)
ol a0L ol

where 9% = [L UTL, UTE, isthe boundary of i, n = (ny,n,)7 is the outward unit
normal to the boundary 9Q%, and du/dn is the normal derivative, i.e., the derivative
in the outward normal direction to the boundary 0),. Recall that derived local integral
equations do not involve any gradients of the field variables. This is very appropriate
from the point of view of meshless approximation because of saving the computational
time and decreasing the inaccuracy due to derivatives of field variables. Since u;

vanisheson Ly , n - Vu = g,,.

We can integrate it by part, by using

(Vu) - (Vu)) = V- (uVy) — uV?y, (3.25)
Eqg. (3.24) becomes
) . ou o, i}
(V'wu;dQ = f %uidf+f. quu;dl— | V- (uvy;)dQ
(0 Tep Ten Q%
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+ f uV?u;d Q.
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Since V2u* + §(x,y) = 0, the equation (3.26) becomes

Ju
(VPwujdQ = J %u;*dl"+J. quuidl— | V- (uVy;)dQ
Qé F;D FéN Qé (3 27)
- u(xi, t) .
By divergence theorem, Eq. (3.27) can be written as:
2 * au * — *
(V'wu dQ = —u(x;,t) + | a—ui ar + | quu;dr”
Qé‘ r.lSD n r.lSN (3 28)
ou; _ou; ou; '
—f u—-drl— Uu—-d 77— u dr.
i on i on i on
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Similarly, we have
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(V2v)u;dQ = —v(x;, t) +f —u dF+f_ quuidl”

Qk Tin
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The local integration equation of (3.28) and (3.29) can be written as:

f —u;dQ = Dl[ u(xl,t)+f —u ;dr
Ql
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iy, : n
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Let ©i(x, t) and ¥(x, t) are the trial solution and. We define u(x,t) = #i(x,t) and
v(x,t) = ¥(x,t). The Egs. (3.30) and (3.31) can be written as:

0L 40 = b, |- t)+] ou *dF+J Goutdln
. at u; =Dy |—ulx,, o anui réNQuui

ou; _ou; _ou;
—f ti—dl— u—-dI>I— i (3.32)
on ri, on ri, on

+a1J'ﬁuZ‘dQ+J AT, 7) u; dQ +f f1 (x, )u;dq,
al al
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ov 5
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For internal nodes, from local integral equations (3.1) and (3.2), and using the MKA or
RPIM (Egs.(2.9) or (2.24)), we have the following nonlinear equations:
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Similarly, we have
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The following abbreviations have been used for the integral terms:
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The boundary and domain integrals are calculated by using the Gauss-Legendre
quadrature method. We can rewrite the Egs. (3.34) and (3.35) as:
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The Egs. (3.36) and (3.37) can be written in vector form as:

=

AaU—B U+D
ot 1 L

_

ov SN
A< =B,V +CU+D,,

where

A=lay], . Bi=[bf] . B2=[b3] .C=lcy] . D1=ldidnxa

D; = [dZi]nxliﬁ =[0; 2 - fGyland V =[D; D, - Dy]'.
In case of Euler’s method, the Egs.(3.38) and (3.39) become
AU = (A + AtB,)U* + AtDk,
AV = (A + AtB,)V* + At(CTU* + D).

U*** and V**1 can be solved in Egs. (3.40) and (3.41)
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