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  CHAPTER 2 THEORETICAL AND BACKGROUND 

The theories, that are related to this research, have been divided into 6 sections; such as 

governing equation, Brusselator system, constructing shape functions, test function, 

numerical method  and finally, temporal discretization. The governing equation and 

Brusselator system are presented for the formulations and the meaning of the 

parameters. The constructing shape functions, that are used for space discretrization, are  

the moving Kriging approximation and the radial point interpolation method. In this 

thesis, a fundamental solution and a Heaviside step function are used as the test 

function. In a part of the numerical method are presented the domain and boundary 

integrals such as Trapezoidal, Simpson and midpoint rules and the Gauss-Legendre 

quadrature method. Moreover, the Euler, Runge-Kutta and Crank-Nicolson methods are 

presented for temporal discretization. 

 

2.1 Governing Equation 

The numerical simulations of the coupled pair of nonlinear partial differential equation 

(Shirzadi, 2013) are as follow: 

 

𝜕𝑢

𝜕𝑡
= 𝐷1∇

2𝑢 + 𝛼1𝑢 + 𝐴(𝑢, 𝑣) + 𝑓1(𝒙, 𝑡), 

 
𝜕𝑣

𝜕𝑡
= 𝐷2∇

2𝑣 + 𝛼2𝑣 + 𝛽𝑢 + 𝐵(𝑢, 𝑣) + 𝑓2(𝒙, 𝑡)   

(2.1) 

given initial and Dirichlet and/or  Neumann’s boundary conditions in the two-

dimensional region Ω, where 𝐷1, 𝐷2, 𝛼1, 𝛼2 and  are given constants, A and B are 

functions of the field variables u and 𝑣,  𝑓1 and 𝑓2 are assumed to be prescribed sources. 

In the case of a two-component reaction system, 𝑢(𝒙, 𝑡) and  𝑣(𝒙, 𝑡) stand for the 

concentrations and 𝐷1, 𝐷2 for the diffusion coefficients of the chemical species. 

 

2.2  Brusselator  System 

Let 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) and 𝑣 = 𝑣(𝑥, 𝑦, 𝑡) represent the concentrations of two reaction 

products at time 𝑡, 𝐴 and 𝐵 are constant concentrations of two input reagents, and 𝐷 (a 

constant) represent the reactor length. Then, the partial differential equations associated 

with the “Brusselator” system are given by (Adomian, 1995) 

 

 

𝜕𝑢

𝜕𝑡
= 𝐵 + 𝑢2𝑣 − (𝐴 + 1)𝑢 + 𝐷 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) ,

0 < 𝑥, 𝑦 < 𝐿, 𝑡 > 0, 

(2.2) 

 
𝜕𝑣

𝜕𝑡
= 𝐴𝑢 − 𝑢2𝑣 + 𝐷 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) , 0 < 𝑥, 𝑦 < 𝐿, 𝑡 > 0, (2.3) 

subject to Neumann boundary conditions on the boundary 𝜕Ω of the square Ω defined 

by the lines 𝑥 = 0, 𝑦 = 0, 𝑥 = 𝐿, 𝑦 = 𝐿, given by 
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𝜕𝑢(0, 𝑦, 𝑡)

𝜕𝑥
=
𝜕𝑢(𝐿, 𝑦, 𝑡)

𝜕𝑥
=
𝜕𝑢(𝑥, 0, 𝑡)

𝜕𝑦
=
𝜕𝑢(𝑥, 𝐿, 𝑡)

𝜕𝑦
= 0, 𝑡 ≥ 0, (2.4) 

 
𝜕𝑣(0, 𝑦, 𝑡)

𝜕𝑥
=
𝜕𝑣(𝐿, 𝑦, 𝑡)

𝜕𝑥
=
𝜕𝑣(𝑥, 0, 𝑡)

𝜕𝑦
=
𝜕𝑣(𝑥, 𝐿, 𝑡)

𝜕𝑦
= 0, 𝑡 ≥ 0, (2.5) 

and initial conditions 

 𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),   (𝑥, 𝑦) ∈ Ω ∪ 𝜕Ω,    (2.6) 

𝑣(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦),   (𝑥, 𝑦) ∈ Ω ∪ 𝜕Ω,  

where  𝑓 and 𝑔 are given continuous  functions of 𝑥 and 𝑦. 

Consider the diffusion-free  “Brusselator” system given by Eqs.(2.2) and (2.3) with 

𝛼 = 0 

 
𝜕𝑢

𝜕𝑡
= 𝑓1(𝑢, 𝑣) = 𝐵 + 𝑢2𝑣 − (𝐴 + 1)𝑢,     𝑡 > 0,   𝑢(0) = 𝑈0, (2.7) 

 
𝜕𝑣

𝜕𝑡
= 𝑓2(𝑢, 𝑣) = 𝐴𝑢 − 𝑢

2𝑣,     𝑡 > 0,   𝑣(0) = 𝑉0, (2.8) 

in which 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) and 𝐴 and 𝐵 are positive real constants. It can be shown 

that the only critical point of the ordinary differential equation (ODE) system is 

(𝑢∗, 𝑣∗) = (𝐵, 𝐴/𝐵). The Jacobian, 𝐽∗, at the critical point (𝑢∗, 𝑣∗) is given by 

𝐽∗=[𝐴 − 1 𝐵2

−𝐴 −𝐵2
] 

and its eigenvalues 𝜆1,2 satisfy the characteristic equation 

𝜆2 + (1 − 𝐴 + 𝐵2)𝜆 + 𝐵2 = 0 

The roots of this equation, the eigenvalues of 𝐽∗, clearly depend on 1 − 𝐴 + 𝐵2  and on 

the quantity  ∆≡ (1 − 𝐴 + 𝐵2)2 − 4𝐵2.  

 

For small values of the diffusion coefficient𝛼, if  1 − 𝐴 + 𝐵2 > 0 then the numerical 

solution of the Brusselator system converges to an equilibrium 

 points (𝐵, 𝐴/𝐵) (Twizell,1999) 

 

2.3 Constructing Shape Function 

In this thesis, There are two methods for approximating The regular nodal shape 

functions  such as  the  moving  kriging  approximation (MKA) method and  radial point 

interpolation method (RPIM). 

 

2.3.1  Moving Kriging Approximation 

The kriging approximation is a well-known geostatic technique for spatial interpolation 

in geology and mining (Lei, 2003). The formulation of the construction of meshless 
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shape function by moving kriging approximation (MKA) is introduced briefly in the 

following.Similar to the MLS approximation, Consider the function 𝑢(𝒙) defined in the 

domain Ω  discretized by a set of properly scattered nodes   𝒙𝑖 , (𝑖 = 1,2, … , 𝑛), where 𝑛 

is the total number of nodes in the whole domain. It is assumed that only 𝑁 nodes 

surrounding point 𝒙 have the effect on 𝑢(𝒙).The sub-domain Ω𝒙 that encompasses these 

surrounding nodes is called the interpolation domain of point 𝒙. The MKA 𝑢ℎ(𝒙) at 

point 𝒙 is defined as presented in (Lei, 2003; Chen, 2011). Therefore the formulation of 

the meshless shape function using MKA is given by  

 𝑢ℎ(𝒙) =∑ 
𝐼

𝑁

𝐼=1

(𝒙)𝑢𝐼 = (𝒙)𝒖        , 𝒙Ω𝒙   (2.9) 

 

where  𝒖 = [𝑢(𝒙1)  𝑢(𝒙2)⋯𝑢(𝒙𝑁)]
𝑇  is a vector value of the function  in the 

domain Ω.  (𝒙)  is a 1 × 𝑁 vector of shape functions, expressed as: 

 

 (𝒙) = 𝒑𝑇(𝒙)𝑨 + 𝒓𝑇(𝒙)𝑩,    (2.10) 

where  matrices 𝑨 and 𝑩 are defined as:  

   

 
𝑨 = (𝑷𝑇𝑹−1𝑷)−1𝑷𝑇𝑹−1,  

𝑩 = 𝑹−1(𝑰 − 𝑷𝑨). 
(2.11) 

In which I   is a unit matrix of size 𝑁𝑁, and vector  𝒑(𝒙)  is: 

 

 𝒑𝑇(𝒙) = [𝑝1(𝒙1) ⋯ 𝑝𝑚(𝒙𝑁)]. (2.12) 

In general, a linear basis in two-dimensional space is: 

 

 𝒑𝑇(𝒙) = (1, 𝑥, 𝑦),   𝑚 = 3  , (2.13) 

a quadratic basis is given as 

 

𝒑𝑇(𝒙) = (1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2),   𝑚 = 6,                                     (2.14) 

and a cubic basis is 

 𝒑𝑇(𝒙) = (1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3),   𝑚 = 10. (2.15) 

For matrix 𝑷  with the size  𝑁 𝑚 , values of the polynomial basis functions (2.12) at 

the given set of nodes are collected: 

 𝑷 = [
𝑝1(𝒙1) ⋯ 𝑝𝑚(𝒙1)
⋯ ⋯ ⋯

𝑝1(𝒙𝑁) ⋯ 𝑝𝑚(𝒙𝑁)
]. (2.16) 

Matrices 𝑹 and vector 𝒓(𝒙) are defined by the following equations: 
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 𝑹 =   [
𝛾(𝒙1, 𝒙1) ⋯ 𝛾(𝒙1, 𝒙𝑁)

⋯ ⋯ ⋯
𝛾(𝒙𝑁, 𝒙1) ⋯ 𝛾(𝒙𝑁 , 𝒙𝑁)

], (2.17) 

 𝒓𝑇(𝒙) =   [𝛾(𝒙, 𝒙1)  ⋯   𝛾(𝒙, 𝒙𝑁)], (2.18) 

where  𝛾(𝒙𝑖, 𝒙𝑗)  is the correlation function between any pair of nodes located at  𝒙𝑖 and  

𝒙𝑗 , representing the covariance of the field value 𝑢(𝒙) , i.e. 

 

 𝛾(𝒙𝑖, 𝒙𝑗)  =   𝐸[𝑢(𝒙𝑖) 𝑢(𝒙𝑗) ], (2.19) 

Similarly, the covariance  𝐸[𝑢(𝒙𝑖) 𝑢(𝒙𝑗) ] can be replaced by 𝛾(𝒙, 𝒙𝑗). It can be seen 

from the foregoing formulations that the values of matrices 𝑹 and 𝒓 play important roles 

in the computation. A simple and frequently- used correlation function is a Gaussian 

function: 

 

𝛾(𝒙𝑖, 𝒙𝑗) = 𝑒
−𝜃𝑟𝑖𝑗

2

,                                                         (2.20) 

where   𝑟𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖  and   > 0 are the correlation parameters used to fit the model 

and are assumed to be given. 

 

The first-order partial derivatives of the shape function (𝒙) against the coordinates 

𝒙𝑖, 𝑖 = 1,2 can be easily obtained from Eq. (2.3) 

 

 ,𝑖(𝒙) = 𝒑,𝑖
𝑇(𝒙)𝑨 + 𝒓,𝑖

𝑇(𝒙)𝑩, (2.21) 

where  (∙),𝑖 denotes  𝜕(∙)/𝜕𝑥𝑖 . 
 

The shape function obtained from the moving kriging approximation possesses the 

following delta function property: 

 𝐼(𝒙𝐽) = 𝛿𝐼𝐽 = {
1, (𝐼 = 𝐽, 𝐼 = 1,2, … ,𝑁)
0, (𝐼 ≠ 𝐽, 𝐼, 𝐽 = 1,2, … ,𝑁)

 (2.22) 

The moving kriging approach is an exact interpolator, and its shape functions can 

exactly reproduce any function included in the basis. In particular, if all constants and 

linear terms are included, it reproduces a general linear polynomial exactly,  
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∑𝐼(𝒙)

𝑁

𝐼=1

= 1

∑𝐼(𝒙)

𝑁

𝐼=1

𝑥𝐼 = 𝑥

∑𝐼(𝒙)

𝑁

𝐼=1

𝑦𝐼 = 𝑦
}
 
 
 
 

 
 
 
 

.   (2.23) 

 

2.3.2  Radial Point Interpolation Method 

The radial point interpolation method (RPIM) 𝑢ℎ(𝒙) at point 𝒙 is defined as presented 

in (Chen, 2010). Consider the function 𝑢(𝒙) defined in the domain Ω  discretized by a 

set of properly scattered nodes  𝒙𝑖 , (𝑖 = 1,2, … , 𝑛), where 𝑛 is the total number of nodes 

in the whole domain. It is assumed that only 𝑁 nodes surrounding point 𝒙 have the 

effect on 𝑢(𝒙). The sub-domain Ω𝒙 that encompasses these surrounding nodes is called 

the interpolation domain of point 𝒙. The 𝑢ℎ(𝒙) at   𝒙𝑞  is approximated in the form of 

 𝑢ℎ(𝒙, 𝒙𝑞) =∑𝑅𝑖

𝑁

𝑖=1

(𝒙)𝑎𝑖 +∑𝑃𝑗

𝑚

𝑗=1

(𝒙)𝑏𝑗 = 𝑹𝑇(𝒙)𝒂 + 𝑷𝑇(𝒙)𝒃,    (2.24) 

where 𝑅𝑖(𝒙) is a radial basis function, 𝑃𝑗(𝒙) is a monomial in the space coordinates 

𝒙𝑖 = (𝑥𝑖, 𝑦𝑖)
𝑇 ,𝑚 is the number of polynomial basis functions. The polynomial basis 

function is defined as the MKA method. Coefficients  𝑎𝑖 and 𝑏𝑗 are constants yet to be 

determined. We also choose  𝑚 < 𝑁  to have better stability of the interpolating 

function. For give 𝒙,  we have 

𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑁]
𝑇 , 𝒃 = [𝑏1, 𝑏2, … , 𝑏𝑚]

𝑇 

𝑹𝑇(𝒙) = [𝑅1(𝒙), 𝑅2(𝒙),… , 𝑅𝑁(𝒙)], 𝑷𝑇(𝒙) = [𝑃1(𝒙), 𝑃2(𝒙),… , 𝑃𝑚(𝒙)] 

Typically, in two-dimensional problems 

 𝑹𝑖(𝒙) = 𝑹𝑖(𝑟𝑖) = 𝑅𝑖(𝑥, 𝑦)   (2.25) 

                𝒓𝑖(𝒙) = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2  (2.26) 

Now enforcing equation (2.24) to be satisfied at nodes to determine the coefficients 

𝑎𝑖 and 𝑏𝑖. The matrix form is: 

 𝑼𝑠 = 𝑹𝑄𝒂 + 𝑷𝑚𝒃 (2.27) 

where   𝑼𝑠 = [𝑢1, 𝑢2, … . 𝑢𝑁]
𝑇 .  Matrix 𝑹𝑄 is given by 
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 𝑹𝑄 = [

𝑅1(𝒙1)    𝑅2(𝒙1)     ⋯    𝑅𝑁(𝒙1)

𝑅1(𝒙2)     𝑅2(𝒙2)     ⋯    𝑅𝑁(𝒙2)
⋮               ⋮              ⋮             ⋮

   𝑅1(𝒙𝑁)    𝑅2(𝒙𝑁)     ⋯   𝑅𝑁(𝒙𝑁)   

]

𝑁×𝑁

. (2.28) 

The matrix 𝑷𝑚 is a  𝑁 × 𝑚 matrix given by 

 𝑷𝑚 = [

𝑃1(𝒙1)    𝑃2(𝒙1)     ⋯    𝑃𝑚(𝒙1)

𝑃1(𝒙2)     𝑃2(𝒙2)     ⋯    𝑃𝑚(𝒙2)
⋮               ⋮              ⋮             ⋮

   𝑃1(𝒙𝑁)    𝑃2(𝒙𝑁)     ⋯   𝑃𝑚(𝒙𝑁)   

]

𝑁×𝑚

. (2.29) 

However, there are 𝑁 +𝑚 variables in equation (2.27), but only have 𝑁 equations, so it 

is an undetermined equations, solving the above equation (2.27) needs to impose a 

constraint equation 

 𝑷𝑚
𝑇 𝒂 = 0. (2.30) 

Combing equations (2.20) and (2.23), the matrix form becomes 

 [
𝑹𝑄 𝑷𝑚

𝑷𝑚
𝑇 0

] [
𝒂
𝒃
] = [

𝑼𝑠
0
] .   (2.31) 

Solving equation (2.24), we can obtain 

 𝒃 = 𝑺𝑏𝑼𝑠, (2.32) 

 𝒂 = 𝑺𝑎𝑼𝑠,    (2.33) 

where  𝑺𝑏 = [𝑷𝑚
𝑇 𝑹𝑄

−1𝑷𝑚]
−1
𝑷𝑚𝑹𝑄

−1,   𝑺𝑎 = 𝑹𝑄
−1 − 𝑹𝑄

−1𝑷𝑚𝑺𝑏 .           

 Substituting 𝒂, 𝒃 back into equation (2.17), we obtain 

 𝑼ℎ(𝒙, 𝒙𝑞) = [𝑹
𝑇𝑺𝑎 + 𝑷

𝑇𝑺𝑏]𝑼𝑠 =∑𝒊(𝒙)

𝑁

𝑖=1

𝑢𝑖 = (𝒙)𝑼𝑠 ,    (2.34) 

where shape function (𝒙) with the size 1 × 𝑁  is given by 

 (𝒙) = [1(𝒙),2(𝒙), … ,𝑁(𝒙)]. (2.35) 

A radial basis function is defined as: Gaussian (EXP): 

 𝑅𝑖(𝒙) = 𝑒(−𝑐𝑟
2) = 𝑒(−𝑐[(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2]),    (2.36) 

where 𝑐 is all called shape-parameter.        
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𝜕𝑘

𝜕𝑥
=∑

𝜕𝑅𝑖
𝜕𝑥

𝑁

𝑖=1

𝑆𝑖𝑘
𝑎 +∑

𝜕𝑃𝑗

𝜕𝑥

𝑁

𝑗=1

𝑆𝑗𝑘
𝑏  ,   

𝜕𝑘

𝜕𝑦
=∑

𝜕𝑅𝑖
𝜕𝑦

𝑁

𝑖=1

𝑆𝑖𝑘
𝑎 +∑

𝜕𝑃𝑗

𝜕𝑦

𝑁

𝑗=1

𝑆𝑗𝑘
𝑏  . 

(2.37) 

2.4 Test Function 

2.4.1 The fundamental solution  

  A fundamental solution 𝑢∗ in infinite space, to the following differential equation 

(Atluri, 2004): 

𝑢,𝑘𝑘
∗ (𝒙, 𝒚) + 𝛿(𝒙 − 𝒚) = 0,                                              (2.38)                                       

defind in an infinite space, where 𝛿(𝒙 − 𝒚)  is the Dirac delta function; 𝒙  is usually 

called the generic or field point; 𝒚 is the source point; and (∙),𝑖𝑖 is the second order 

derivative by 𝑘. Note that the linear differential operator in the differential operator in 

the differential equation governing 𝑢∗ is the same as in that governing the trial function 

𝑢.For the 2-D Laplace problem, the fundamental solution 𝑢∗ is known to be: 

𝑢∗(𝒙, 𝒚) = −
1

2𝜋
ln𝑟, 𝑟 = ‖𝒙 − 𝒚‖, 

If we consider the solution 𝑢 of  the Laplacian differential equation 𝑢,𝑖𝑖 = 0 as the 

potential distribution, then the fundamental solution may be physically interpreted as 

the potential in an infinite space due to a source of unit strength at the source point 𝒚. 

The fundamental solution is sometimes called the singular solution due to the fact that it 

is singular at 𝒙 = 𝒚. 

The trial solution (or the companion solution) 𝑢̃ is associated with the fundamental 

solution 𝑢∗ and is defined as the solution of the following Dirichlet problem over the 

sub-domain Ω𝑠
′ , 

∇2𝑢̃ = 0,  on  Ω𝑠
′       and     𝑢̃ = 𝑢∗(𝒙, 𝒚)     on  𝜕Ω𝑠

′                                 (2.39) 

where Ω𝑠
′ Ω𝑠 such that Ω𝑠

′ = Ω𝑠 for an interior source point 𝒚; and Ω𝑠
′  is the extended 

whole sphere which encloses 𝜕Ω𝑠, a part of the sphere, for a boundary source point 𝒚 

(see Fig.2.1). 

Upon solving the companion solution 𝑢̃∗(𝒙, 𝒚), we can solve the nonlinear problem by 

using a numerical discretization technique. Over the regular shaped sphere Ω𝑠
′  and Ω𝑠, 

The companion solution 𝑢̃  can be easily and analytically obtained for most differential 

operators for which the fundamental solution are available. For the current 2-D potential 

problem, the sub domain Ω𝑠 is a circle of radius 𝑟0. 
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The companion solution to Eq.(2.39) on the circle is a constant and given by  

𝑢̃ = −
1

2𝜋
𝑙𝑛𝑟0. 

Therefore, the modified test function becomes 

 𝑢̃∗ = 𝑢∗ − 𝑢̃ =
1

2𝜋
𝑙𝑛 (

𝑟0
𝑟
). (2.40) 

 

Figure 2.1 Local boundaries, the supports of nodes , the domain of definition of the  

MLS approximation for the trial function at a point. 

 

2.4.2 The  Heaviside  Step Function 

The following piecewise constant function or Heaviside step functions, which is used as 

test function, is given by 

 𝑤(𝒙) = {
1 , 𝒙Ω𝑠

𝑖 ,

0,          𝒙Ω𝑠
𝑖 .

 (2.41) 

2.5 Numerical Method 

2.5.1 Trapezoidal Rule 

Trapezoidal Rule is based on the Newton-Cotes formula that states if one can 

approximate the integrand as n
th

 order polynomial 

 

𝑰 = ∫ 𝑓(𝒙)
𝒃

𝒂
𝑑𝒙,     

 

where  𝑓(𝒙) ≈ 𝑓𝒏(𝒙)  and   𝑓𝑛(𝒙) = 𝑎0 + 𝑎0𝑥 +⋯+𝑎𝑛−1𝑥
𝑛−1+𝑎𝑛𝑥

𝑛.  

Then the integral of that function is approximated by the integral of  nth
  order 

polynomial. 

 

 ∫𝑓(𝒙)

𝒃

𝒂

𝑑𝒙 ≈ ∫𝑓𝑛(𝒙)

𝒃

𝒂

𝑑𝒙 (2.42) 
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Trapezoidal Rule assumes  𝑛 = 1, that is, the area under the linear polynomial, 

 

 ∫𝑓(𝒙)

𝒃

𝒂

𝑑𝒙 = (𝑏 − 𝑎) [
𝑓(𝑎) + 𝑓(𝑏)

2
] . (2.43) 

 

The area under the curve is a trapezoid. The integral 

∫𝑓(𝒙)

𝒃

𝒂

𝑑𝒙 ≈ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑 

                   =
1

2
(𝑆𝑢𝑚 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑖𝑑𝑒𝑠)(ℎ𝑒𝑖𝑔ℎ𝑡) 

 

                   =
1

2
(𝑓(𝑏) + 𝑓(𝑎))(𝑏 − 𝑎) 

 

                    =
1

2
(𝑓(𝑏) + 𝑓(𝑎)) [

𝑓(𝑎) + 𝑓(𝑏)

2
] 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure. 2.2 Geometric representation. 

 

2.5.2 Simpson Rule 

Simpson's rule is a method for numerical integration, the numerical approximation of 

definite integrals. Specifically, it is the following approximation: 

 

∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥  
𝑏 − 𝑎

6
[𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏)]. 

Simpson's rule also corresponds to the three-point Newton-Cotes quadrature rule. The 

method is credited to the mathematician Thomas Simpson (1710–1761) of 

   𝑎   𝑏 𝑥 

𝑦 

𝑓𝐼(𝑥) 

𝑓(𝑥) 

http://en.wikipedia.org/wiki/Numerical_integration
http://en.wikipedia.org/wiki/Definite_integral
http://en.wikipedia.org/wiki/Newton-Cotes_formulas
http://en.wikipedia.org/wiki/Thomas_Simpson
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Leicestershire, England. Kepler used similar formulas over 100 years prior. In German, 

the method is sometimes called Keplersche Fassregel for this reason. Simpson's rule is a 

staple of scientific data analysis and engineering. Simpson's rule can be derived in 

various ways. 

 

 

   

 

 

 

 

Figure2.3 Simpson's rule can be derived by approximating the integrand  𝑓(𝑥)  by the 

quadratic interpolant 𝑃(𝑥). 

Quadratic Interpolation 

One derivation replaces the integrand 𝑓(𝑥) by the quadratic polynomial (i.e. parabola) 

𝑝(𝑥) which takes the same values as 𝑓(𝑥) at the end points a and b and the midpoint 

𝑚 =  (𝑎 +  𝑏) / 2. One can use Lagrange polynomial interpolation to find an 

expression for this polynomial, 

 

𝑃(𝑥) = 𝑓(𝑎)
(𝑥 − 𝑚)(𝑥 − 𝑏)

(𝑎 − 𝑚)(𝑎 − 𝑏)
+ 𝑓(𝑚)

(𝑥 − 𝑎)(𝑥 − 𝑏)

(𝑚 − 𝑎)(𝑚 − 𝑏)
 

                                    +𝑓(𝑏)
(𝑥 − 𝑎)(𝑥 − 𝑚)

(𝑏 − 𝑎)(𝑏 − 𝑚)
, 

                   ∫ 𝑃(𝑥)

𝑏

𝑎

𝑑𝑥  
𝑏 − 𝑎

6
[𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏)]. 

This calculation can be carried out more easily if one first observes that (by scaling) 

there is no loss of generality in assuming that 𝑎 = −1 and  𝑏 = 1. 

2.4.3 Midpoint Rule 

Midpoint Rule 

∫𝑓(𝑥)

𝑏

𝑎

𝑑𝑥   𝑀𝑛 = ∆𝑥[𝑓(𝑥̅1) + 𝑓(𝑥̅2) + ⋯+ 𝑓(𝑥̅𝑛)] 

where   

𝑓(𝑥) 
𝑃(𝑥) 

𝑎 𝑚 𝑐 

http://en.wikipedia.org/wiki/Kepler
http://en.wikipedia.org/wiki/Quadratic_polynomial
http://en.wikipedia.org/wiki/Lagrange_polynomial
http://en.wikipedia.org/wiki/Without_loss_of_generality
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∆𝑥 =
𝑏 − 𝑎

𝑛
 

and  𝑥̅1 =
1

2
(𝑥𝑖−1 + 𝑥𝑖) =  midpoint of [𝑥𝑖−1, 𝑥𝑖]. 

 

 

 

 

 

 

 

 

Figure2.4 Midpoint approximation. 

2.5.4 Gauss-Legendre Quadrature Method 

For 1-D, Let 𝑥𝑖 be nodes and 𝑤𝑖 be weights. The quadrature techniques formulation is 

following as (Abbott, 2005): 

 𝐼1 = ∫ 𝑓(𝑥)𝑑𝑥,
𝑏

𝑎

 (2.44) 

where 𝑓(𝑥) be a polynomial of order 2n-1. Let [a,b] be [-1,1] can be  accomplished by 

scaling.  

 ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑔()𝑑 ≈∑𝑤𝑖

𝑛

𝑖=1

1

−1

1

−1

𝑔𝑖 (2.45) 

where   be transformation of variable 𝑥 and 𝑔() be transformation of variable 𝑥. 

For 2-D, Let 𝑥𝑖 and 𝑦𝑖, 𝑖 = 1,2, … , 𝑛 are nodes and  𝑤𝑖 and  𝑤𝑗 are weights. 

The quadrature   techniques formulation is following as : 

        𝐼2 = ∫ 𝑓(𝑥, 𝑦)𝑑
𝑏

𝑎

= ∫ ∫ 𝑔(,)𝑑
1

−1

1

−1

𝑑 ≈ ∫ 𝐼1

1

−1

𝑑 

 = ∫ ∑𝑤𝑖

𝑛

𝑖=1

1

−1

𝑔𝑖𝑑 ≈∑𝑤𝑗 (∑𝑤𝑖

𝑛

𝑖=1

𝑔𝑖𝑗) =∑∑𝑤𝑖𝑤𝑗

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑗=1

𝑔𝑖𝑗, (2.46) 

𝑥̅1 𝑥̅2 𝑥̅3 𝑥̅4 𝒙 

      𝒚 
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where 
𝑖
,
𝑗
 are transformation of variables and  𝑔𝑖𝑗 is transformation function. 

Calculating for weight 

If we change the boundary condition form [-1,1]. We defined 

𝑥 = 𝐶0 + 𝐶1, 

where  𝐶0, 𝐶1 are unknown constants. 

𝑎 = 𝐶0 + 𝐶1(−1), 

 𝑏 = 𝐶0 + 𝐶1(−1),  

 𝐶0   =    
|
𝑎 −1
𝑏 1

|

|
1 −1
1 1

|
   =    

𝑎 + 𝑏

1 + 1
   =    

𝑎 + 𝑏

2
,  

 𝐶1   =    
|
1 𝑎
1 𝑏

|

|
1 −1
1 1

|
   =    

𝑏 − 𝑎

1 + 1
   =    

𝑏 − 𝑎

2
,  

Hence   

𝑥 = (
𝑎 + 𝑏

2
) + (

𝑏 − 𝑎

2
)  

 𝑑𝑥 = (
𝑏 − 𝑎

2
)𝑑  

 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓() (
𝑏 − 𝑎

2
)𝑑 ≈ (

𝑏 − 𝑎

2
)

1

−1

𝑏

𝑎

∑𝑤𝑖

𝑛

𝑖=1

𝑓(𝑖)  

For 2-D, we used Gauss-Legendre polynomial (1, , 2,3) then 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 1𝑑 = 2
1

−1

, 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 𝑑 = 0,
1

−1

 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 2𝑑 =
2

3

1

−1

, 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 3𝑑 = 0
1

−1

. 
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Hence 

𝑤1𝑓(1) + 𝑤2𝑓(1) = 2, 

  𝑤1𝑓(1) + 𝑤2𝑓(2) = 0 

 𝑤1𝑓(1
2) + 𝑤2𝑓(2

2) =
2

3
 (2.47) 

             𝑤1𝑓(1
3) + 𝑤2𝑓(2

3) = 0.    

The answers of equation (2.47) are 𝑤1 = 𝑤2 = 1, 1 = −
√3

2
 and 2 =

√3

2
.  Some low-

order rules for solving the integration problem are listed table1. 

Table 2.1 Abscissas and weights for Gaussian quadrature. 

Number of points, n Points, xi Weights, wi 

1 0 2 

2 ±
√3

2
 1 

3 

0 
8

9
 

±√
3

5
 

5

9
 

4 

±√
(3 − 2√6/5)

7
 

18 + √30

36
 

±√
(3 + 2√6/5)

7
 

18 − √30

36
 

5 

0 
128

225
 

±
1

3
√5 − 2√10/7 

322 + 13√70

900
 

±
1

3
√5 − 2√10/7 

322 − 13√70

900
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2.6 Temporal Discretization 

2.6.1   Euler Method  

Often it is not possible or desirable to solve a differential equation,  
𝑑𝑃

𝑑𝑡
= 𝑓(𝑃), 

 

analytically, and one turns to numerical or computational methods. A numerical method 

seeks to approximate the solution to the equation at discrete times. Time is subdivided 

into intervals of length ∆𝑡 , so that 𝑡𝑛 = 𝑛∆𝑡 , and then the method approximates the 

solution at those times, 𝑃𝑛𝑃(𝑡𝑛). One of the oldest ideas for doing this is the Euler 

method. Since   
𝑑𝑃

𝑑𝑡
 
∆𝑃

∆𝑡
     one may write  

 
∆𝑃

∆𝑡
=
𝑃(𝑡𝑛 + ∆𝑡) − 𝑃(𝑡𝑛)

∆𝑡
=
𝑃𝑛+1 − 𝑃𝑛

∆𝑡
≈
𝑑𝑃

𝑑𝑡
= 𝑓(𝑃𝑛). 

 

Solving this expression for 𝑃𝑛+1  you end up with a discrete equation which predicts a 

future value of   𝑃, 𝑃𝑛+1, in terms of a past value:  

 

𝑃𝑛+1 = 𝑃𝑛 + ∆𝑡𝑓(𝑃𝑛). 
 

This can be used to approximate solutions to the differential equation. 

2.6.2  Runge-Kutta Method 

One member of the family of Runge–Kutta methods is often referred to as "RK4", 

"classical Runge–Kutta method" or simply as "the Runge–Kutta method". Let an initial 

value problem be specified as follows. 

 

𝑦̇ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. 

Here, 𝑦 is an unknown function (scalar or vector) of time t which we would like to 

approximate; we are told that 𝑦̇, the rate at which 𝑦 changes, is a function of 𝑡 and of  𝑦   

itself. At the initial time 𝑡0    the corresponding 𝑦-value is 𝑦0. The function 𝑓 and the 

data 𝑡0, 𝑦0are given. 

Now pick a step-size ℎ > 0 and define 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑡𝑛+1 = 𝑡𝑛 + ℎ 

for 𝑛 = 0, 1, 2, 3, . . . , using 

                                                𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛), 

𝑘2 = 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘1),               

http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Initial_value_problem
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                                           𝑘3 = 𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

ℎ

2
𝑘2), 

𝑘4 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + ℎ𝑘3),   

Here 𝑦𝑛+1 is the RK4 approximation of  (𝑡𝑛+1) , and the next value (𝑦𝑛+1) is 

determined by the present value (𝑦𝑛) plus the weighted average of four increments, 

where each increment is the product of the size of the interval, ℎ, and an estimated slope 

specified by function 𝑓 on the right-hand side of the differential equation. 

1. 𝑘1 is the increment based on the slope at the beginning of the interval, using 𝑦̇, 

(Euler's method) ; 

2. 𝑘2 is the increment based on the slope at the midpoint of the interval, using   

 𝑦̇ +
ℎ

2
𝑘1; 

 

3. 𝑘3  is again the increment based on the slope at the midpoint, but now using 

 𝑦̇ +
ℎ

2
𝑘2; 

 

4. 𝑘4  is the increment based on the slope at the end of the interval, using  𝑦̇ + ℎ𝑘3. 

 

2.6.3 Crank-Nicolson Method 

The Crank–Nicolson method is based on the trapezoidal rule, giving second-order 

convergence in time. For example, in one dimension, if the partial differential equation 

is 

𝜕𝑢

𝜕𝑡
= 𝐹 (𝑢, 𝑥, 𝑡,

𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
), 

then, letting 𝑢(𝑖∆𝑥, 𝑛∆𝑡) = 𝑢𝑖
𝑛, the equation for Crank–Nicolson method is a 

combination of the forward Euler method at 𝑛  and the backward Euler method at 

𝑛 +  1 (note, however, that the method itself is not simply the average of those two 

methods, as the equation has an implicit dependence on the solution): 

 

 
𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= 𝐹𝑖

𝑛 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
),   (2.48) 

 

 

 
𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= 𝐹𝑖

𝑛+1 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
), (2.49) 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Weighted_average
http://en.wikipedia.org/wiki/Euler%27s_method
http://en.wikipedia.org/wiki/Trapezoidal_rule_(differential_equations)
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Forward_Euler_method
http://en.wikipedia.org/wiki/Backward_Euler_method
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Hence (Eq.(2.48)+Eq.(2.49))/2 reveals in Eq.(2.50), 

 

                                                 
 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
=
1

2
[𝐹𝑖

𝑛+1 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
) + 𝐹𝑖

𝑛 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
)], (2.50) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure2.5    The Crank–Nicolson stencil for a 1-D problem. 
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