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ABSTRACT

In this research, the meshless local Pretrov-Galerkin method with the test function in
view of the Heaviside step function is developed to solve the system of coupled
nonlinear reaction-diffusion equations in two dimensional spaces subjected to Dirichlet
and Neumann boundary conditions on a square domain. Two-field velocities are
approximated by moving Kriging approximation for constructing nodal shape function
that holds the Kronecker delta property, thereby enhancing the arrangement nodal shape
construction accuracy while the Euler, Runge-Kutta and Crank-Nicolson methods are
chosen for temporal discretization. For the Crank-Nicolson method, the nonlinear terms
are treated iteratively within each time step. The developed formulation is verified in
two numerical examples with investigations on the convergence and the accuracy of
numerical results. The numerical experiments reveal the solutions using the developed
formulation which are stable and more precise.
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