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Abstract — A capacitorless all-OTA bandpass biquad is tuned
by utilizing an artificial neural network (ANN) with updated
training sets. The training set contains a few tens samples which
is varying in experiment. The training set is selected from
predefine bias points that are closing to the desired biquad
requirement. A second-order bandpass requirement, centered at
406.2 MHz, is successfully tuned as a sample. Feasibility ean be
easily indicated by observing maximum error of the worst
record in the initial training set. Experiments indicate the
unnecessary of training set that contains over 10 records. In
addition, feasibility is effectively estimated by threshold of 10%
maximum error of the worst record in the training set as this
value almost yields no type-I and type-1I errors no matter how
large the training set is.

L INTROBDUCTION

Though the processing of signal in digital domain is
certainly powerful, most signals of practical interest are
analog [1]. Therefore, to gain the advantages of digital signal
processing, an analog-to-digital converter (ADC) is first
required. However, the ADC only operates on bandlimited
signals which are usually in form of passband especially in
digital communications. Therefore, a continuous-time (CT)
bandpass filter is often utilized as an anti-aliasing filter
(AATF).

Regularly, CT active filters are implemented based on
biquad circuit or simply biquad, which are the second-order
circuits providing operations of CT filters such as lowpass,
bandpass, highpass, etc. However, most biquad structures
require passive resistors and capacitors which are not
favorable to be embedded in an integrated circuit (IC) as they
are poorly tolerance and large area are needed.

Recently, there are literatures [2 — 3] introducing the
possibility of utilizing a capacitorless bandpass biquad which
is actually an OTA-C biquad without dominant capacitors.
The transfer functions are usually managed by parasitic
capacitance, which virtually renders the manual tuning
impossible. Therefore, biquad tuning is conducted via the
genetic algorithm (GA) [2] and the artificial neural network
(ANN) [3]. The tuning via the GA is quite inefficient of
response evaluation which is the slowest task are usually
required. Therefore, quite long tuning time per a biquad’s
specification is observed [2]. Contrastingly, the ANN tuning
scheme requires very little tuning time because the circuit’s
parameters are simply extracted as an output of the trained
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ANN. However, to train the ANN for fitting all predefined
bias points is quite impossible especially in training with
validation and test. Therefore, training without validation is
utilized, which requires extremely long and impractical
training time. In addition, this training method degrades the
generalization of the ANN [4]. Therefore, the trained ANN
hardly provides solutions that precisely match the biquad
specifications [3].

This paper shows the ANN is sequentially trained with
updated small training set consists of a few tens bias points
which are closed to the specified biquad parameters. The
update of this set is occurred if and only if the trained ANN
provides solution that is not satistied but better than the worst
bias point in the present training set. Through several
updating and training, the ANN is supposed to provide an
acceptable solution. By limiting size of training set, the
complexity of an ANN is significantly reduced and the
training time is greatly decreased. Though there may be
several response generations and evaluations, its amount is far
less than the minimum required by the GA. Based on
experiments, the proposed process is far better than the GA-
based tuning [1] and the characterizing ANN [2] that are
previously introduced.

Refer to the experiment; the size of training set is first
varied to perceive its effects on tuning performance. The
analysis of variance (ANOVA) is utilized to indicate whether
the difference is significant or not. If it is not, there is no point
in using large training set as the process can be accomplished
by less effort. In addition, feasibility analysis is examined
based on 100 random biquad requirements with three sizes of
training set.

1L TUNING PROCESS

A.  Definition of biquad experiment

A current-mode biquad [2-3], composed of an ideal and a
lossy current integrators, is considered as a subject of
experiment, which is modified by removing all capacitors.
The composed OTAs are a simple single-stage CMOS OTA
[5]. The missing all capacitors are replaced with parasitic
capacitances of an OTA. Therefore, the capacitors are
virtually existed but cannot be controlled. Therefore, the
controllable circuit’s parameters are limited to the bias current
of each OTA.
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B.  Concept of applied Artificial Neural Network

The general form of a bandpass biquad is composed of
three main parameters, which are the gain (K), pole frequency
(wp), and Q-factor (Q,) [6]. According to the experiment
biquad, there are three bias current (I;, I, and I;) to be
adjusted. The associate ANN, applied to utilize the studied
biquad, is operating in opposite to the actual circuit as the
biquad’s parameters are taken as input, which is employed to
estimate the corresponding bias currents. Therefore, the
operation of the trained ANN is functionalized:

1, K
I |=Fw| | @, (1)
I3 9,

where Fany is a virtual function representing the transferring
of biquad’s requirements to actual circuit’s parameters based
on the trained ANN. The training process treats a requirement
vector as an input and recognizes the vector of the
corresponding circuit’s parameters as an output.

C.  Data Collection

To create a set of predefined bias points, the range of bias
current is quantized based on a desired quantizing resolution
(Ap), which is resulted in the minimum quantizing level (Lq).

LQ=’VImaX_1min—‘+1 ?)

Based on full combination of all bias currents, the total
amount of predefined records (Ty) are simply:

Tp =Ly (3)

where n is the number of circuit’s parameters. Finally, the
actual quantizing resolution is:

A, = tmax = Tmin @)

According to eq. (2) and (4), the actual resolution is always
lower than or equal to the desire resolution.

D. Initialize the Training Set

Fig. 1 presents the organized distribution of bias points
which usually generate the chaotic biquad points displayed in
fig. 2. To select an appropriate initial training set, the
gathering cube is centered at the specific point representing
the biquad specification as displayed in fig. 2. To initialize the
training set, the volume of the gathering cube can be
increased or decreased until the amont of biquad points inside
the cube is equal to the size of training set.

Fig. 1. Predefined bias point

K

Fig. 2. Predefined biquad point with gathering cube
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Fig. 3. Sequential Training

E.  Sequential Training and Utilization

As the training set is small and contains only samples that
are closed to the desired biquad, there is no division of data.
Therefore, the training of the deployed ANN is conducted
without validation and test. If there is significant training
error, it will be relieved through the sequential training
process presented by the flowchart in fig. 3.
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Firstly, the ANN is trained with the initial training set.
Once the ANN is completely trained, it is utilized to estimate
the bias currents which are exploited to generate the practical
response based on the HSPICE simulation. If the deviation in
biquad’s parameters of generated response is considered
insignificant, the process is finished. If not, the training set is
updated if the recently generated response is better than the
worst member in the present training set. Then, the ANN is
trained again. These tasks can be looped forever if there is no
second terminating criterion which is the reaching of
maximum loop that strongly indicates the failure of tuning.

M1 TUNING A SAMPLE OF BIQUAD

A.  Implementation of Tuning Scheme

We use a single-stage CMOS OTA [2-3] which support the
AMS’s 0.35u CMOS process. The range of bias current is
stimulatingly estimated to 11 pA — 1.1 mA and the ratio of
gmo/ly indicates the efficiency of an OTA; high ratio means
the efficient utilization of bias current and dissipated power.
The bias current should not be over a few hundred pA to
maintain the significant R, and efficiency. Therefore, the
maximum bias current of 300 pA is specified.

The key characteristics of the proposed process are the less
complex ANN which is sequentially trained with very small
training set. Therefore, the predefined bias point must be
collected with quite small resolution of bias current to cover
most of the operational region. Key parameters concerning
the implementation of tuning scheme are listed in table 2.

TABLE II
KEY PARAMETER OF SAMPLED TUNING SCHEME

Parameter Value
Resolution 10pA
Minimum bias current 10pA
Maximum bias current 300pA
Size of predefined bias point 24,389 records

Final iteration of scquential training 20"

ANN type Cascade-forward (CF)
Number of hidden layer 1
Size of cach layer except the output 10
Size of output layer 3
Training goal 0.1
Size of training sct 20

B.  Tuning Example

The sample bandpass specification in table 3 is compiled
by the Chevyshev approximation, which is resulted in the
desired biquad parameters (K, w, and QOp) that are fed to the
implemented tuning scheme. At the 5" iteration or in 37
seconds, the tuning process successfully estimates 7, = 99.57
nA, 1, =6395 pA, and I; = 211.11 pA. The test biquad is
then simulated based on these bias currents, which gives the
bandpass response shown in figure 4. The key specifications
are measured and presented in the last column of table 4
alongside the desired specification. Comparing biquad’s
parameters, very low percentage error is obtained, which
leads to a well satisfaction of filter’s requirements.

TABLE Il

SPECIFICATION OF BANDPASS RESPONSE

Requirement Desired Spec. Obtained Spec.
Filter type Bandpass Bandpass
Passband ripple <3dB <3dB
Stopband attenuation >20dB >20dB

Passband

300MHz — 550 MHz

300 MHz — 551 MHz

Stopband <50 MHz, >3 GHz | <77 MHz, > 1.68 GHz
Biquad parameters Desired Spec. Obtained Spec.

K 1 0.997

w, 2.55%x10° rad/s 2.56x10° rad/s

5 406.2 MHz 407.4 MHz

0, 1.621 1.62

Fig. 4 T
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Iv.

PERFORMANCE ANALYSIS

A.  Size of Training Set and Its effects

The sample bandpass specification is tuned via the varied
size of training set, ten times per each size. Average errors are
recorded in table 4 which is fed to the analysis of variance
(ANOVA) to indicate the significance of varied sizes.

The result of ANOVA is shown in table 5. There is no
indication of significant difference between varied sizes of
training set as the p-value is very large and larger than the test
a of 0.05. Therefore, the size of training set is not significant
as long as it is greater than 10 records.

TABLE IV
THE RESPONSE OF VARYING THE TRAINING SET

The average error of training set
No.
10 20 30
1 0.529242 0.213770 0.515820
2 0.225351 0.276198 0.586067
3 0.282924 0.386446 0.315664
4 0.413365 0.429341 0.392547
5 0.511378 0.532021 0.484542
6 0.621450 0.499951 0.369264
7 0.420530 0.227604 0.415627
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The average error of training set
No.
10 20 30
8 0302668 0.603579 0.465140
9 0.436234 0.418670 0.264486
10 0.2798%0 0.313035 0.445083
TABLE V
ONE-WAY ANOVA: AVERAGE ERROR VERSUS 81ZE
Source DF 88 MS F P
Size 2 0.0066 0.0033 0.23 0.796
Error 27 0.3868 0.0143
Total 29 0.3934

B. Feasibility analysis

As there are some biquad specifications that may not
possible to generated, the feasibility of the biquad’s
requirement can be simply indicated by observing the initial
training set. A biquad specification is feasible if and only if
the maximum percentage deviation in biquad parameters
observed from all records is less than or equal to the
threshold.

The performance of the proposed tuning scheme is
expressed in terms of type-I and type-II error. The type-I error
is occurred when the infeasible requirement can be
successfully tuned. If the process fails to tune a feasible
requirement, then the type-II error is happened.

In this case, the threshold to indicate the feasibility is
10% and the successfully tuned responses must not deviate
over 1%. According to the based OTA and its reasonable bias
range, 100 random biquad requirements are generated in the
following range; 0.8 <K < 2, 300 MHz < f, < 500 MHz, and
0.8 < Qp < 2. Figure 5 shows tuning results of vary training
set at 100 trails which are sorted by maximum initial error of
initial training set. FEach trial is numbered and its
corresponded maximum initial and tuned errors are presented.

According to the first case which 10 size of training set,
there are 66 random requirements that suffer maximum nitial
error less than 10% which are all successfully tuned as their
maximum tuned error are less than 1 %. The rest 34 random
requirements are initialed with maximum error greater than
10% which consequently fail all associated tuning processes
ag their maximum tuned errors are all greater thean 1%.
Therefore, no wrong indication is occurred, which makes the
probability of type-1 (e) and type-II (B) errors zero.

The second case which 20 size of training set also
indicates no o and [5 as same as the first case but the number
of feasible and infeasible requirements is difference

In proportion to the last case which the size of training set
is 30, there is no wrong indication of feasible requirements
but there is only one false indication of infeasible
requirements. Therefore, the a is only 0.013 with no . Table
6 summarizes performances of feasibility analysis by
threshold equal to 10%. Interestingly, varying the training set
is virtually not affecting the a and . Thus, the threshold of
10% is proved most suitable to indicate the feasibility.

|
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Percentage Error
5

~—B=iaximum Innitial Error

=e=laximum Tuned Errar
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Sorted Trials
Figure 5. The tuning response of training set is 30

TABLE VI
SUMMATION OF PERFORMANCE ON THRESHOLD = 109
Size of Feasible Requirements Infeasible Requirements
training Error £ Error > Error £ Error >
set 1% 1% 1% 1%
10 66 0 0 34
20 64 1} 0 36
30 76 [} 1 23
V. CONCLUSIONS

A capacitorless all-OTA bandpass biquad is tuned
via the sequential trained ANN. A training set of a few tens
samples is selected from predefine bias points that are closing
to the biquad specification. With this selection scheme, the
deployed ANN can be less complex, which consequently
requires little tuning time. The feasibility of biquad
requirements is indicated by examining the maximum error of
the training set. A second-order bandpass requirement is
picked as a sample which is successfully tuned within a
minute. Experiments on varied size of training set indicate the
gignificance of training set larger than 10 records. In
addition, threshold of 10% is recommended as there is
virtually no difference in a and p while varied the size of
training set.
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Tuning of a Capacitorless Bandpass Biquad through
Sequentially Trained ANN

Montira Moonngam * , Roungsan Chaisricharoen, and Boonruk Chipipop

Abstract — The sequential trained artificial neural network
(ANN) based on updated training sets is successfully deployed
to tune a capacitorless all-OTA bandpass biquad. The
training set contains less than a few tens samples which are
selected from predefine bias points that are closed to the
desired biquad requirement. To limit training time, the less
complex ANN is recommended. Feasibility of a biquad
requirement is easily indicated by observing the maximum
error of the worst element in an initial training set. A second-
order bandpass requirement, centered at 406.2 MHz, is
successfully tuned as a sample. The proposed feasibility
analysis and tuning process are tested with one hundred
random bandpass requirements. As there is no indication of
type-1 and type-11 errors, the proposed process is considered
very efficient’.

Index Terms —

less, ANN, bandpass biquad

I. INTRODUCTION

Though the processing of signal in digital domain is
certainly powerful, most signals of practical interest are
analog [1]. Therefore, to gain the advantages of digital signal
processing as an analog-to-digital converter (ADC) is first
required. However, the ADC only operates on bandlimited
signals which are usually in form of passband especially in
digital communications. Therefore, a continuous-time (CT)
bandpass filter is often utilized as an anti-aliasing filter (AAF).

Regularly, CT active filters are implemented based on
biquad circuit or simply biquad, which are the second-order
circuits providing operations of CT filters such as lowpass,
bandpass, highpass, etc. However, most biquad structures
require passive resistors and capacitors which are not
favorable to be embedded in an integrated circuit (IC) as they
are poorly tolerance and large area are needed.

Recently, there are literatures [2 — 3] introducing the
possibility of utilizing a capacitorless bandpass biquad which
is actually an OTA-C biquad without dominant capacitors.
The transfer functions are usually managed by parasitic
capacitance, which virtually renders the manual tuning
impossible. Therefore, biquad tuning is conducted via the
genetic algorithm (GA) [2] and the artificial neural network
(ANN) [3]. The tuning via the GA is quite inefficient as
several thousands of response generation and evaluation
which very slowly task are usually required. Therefore, quite
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long tuning time per a biquad’s specification is observed [2].
Contrastingly, the ANN tuning scheme requires very little
tuning time because the circuit’s parameters are simply
extracted as an output of the trained ANN. However, to train
the ANN for fitting all predefined bias points is quite
impossible especially in training with validation and test.
Therefore, training without validation is utilized, which
requires extremely long and impractical training time. In
addition, this training method typically degraded the
generalization of the ANN [4]. Therefore, the trained ANN
hardly provides solutions that precisely match the biquad
specifications [3].

In this paper, the ANN is sequentially trained with updated
small training set consists of a few tens bias points which are
closed to the specified biquad parameters. The update of this
set is occurred if and only if the trained ANN provides
solution that is not satisfied but better than the worst bias
point in the present training set. Through several updating and
training, the ANN is supposed to provide an acceptable
solution. By limiting size of training set, the complexity of an
ANN is significantly reduced and the training time is greatly
decreased. Though there may be several response generations
and evaluations, its amount is far less than the minimum
required by the GA. Based on experiments, the proposed
process is far better than the GA-based tuning [2] and the
characterizing ANN [3] that are previously introduced.

II.  CIRCUIT DESCRIPTION

This section covers the details regarding the experiment
circuit in both network and transistor levels.

A. Definition of Experiment Biquad

A current-mode biquad [5], composed of an ideal and a
lossy current integrators, is considered as a subject of
experiment, which is modified by removing both capacitors as
shown in fig. 1. However, the missing capacitors are replaced
with parasitic capacitances of an OTA. Therefore, C; and C,
are virtually existed but cannot be controlled. Therefore, the
controllable circuit’s parameters are limited to the bias current
of each OTA.

Fig. 1. Biquad in experiment.
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B. Design and Evaluation of the Fundamental OTA

A simple active-loaded differential-pair can be configured
as single-stage OTA [6] of both plus and minus outputs as
displayed in fig. 2.

v,

s

(@)
Fig. 2. Single-Stage OTA with plus (a) and minus (b) outputs

The balanced-output OTA, required in biquad, is simply

implemented by piling up both structures in fig. 2 and sharing

the same input. To generate bias voltage from external current

source, only one additional NMOS transistor is required.

Therefore, if n outputs are need, the number of required
transistors (Ny) is:

Np=5n+1 )

The determination of channel width/length is quite simple
as there are only three different functions of composed
transistors: active-loaded, differential-pair, and current source.
Based on the AMS’s 0.35p CMOS process, dimension of
composed transistors are presented in table 1.

TABLE I
TRANSISTOR DIMENSIONS
Function Width (um) | Length (um)
Active-loaded 7 0.35
Differential-pair 12 0.35
Current source 25 0.35

The range of bias current is stimulatingly estimated to 11
pA — 1.1 mA, which is approximately over 2 decades.
However, this wide range only guarantees the saturated
operation of all transistors. Therefore, to estimate the range of
the bias current reasonably, the transconductance at DC (g0),
opened loop bandwidth (f;) of transconductance, and output
resistance (R,) is examined and summarized in table 2.

TABLE II
PERFORMANCES OF THE OTA AT SPECIFIED BIAS CURRENT
L (pA) | gwo (S) | fs (MHz) | R, (kQ)
11 120 212.5 988
55 381 502 278
110 557 694 163
550 1040 1350 41.7
1100 1180 1770 10.6

The ratio of g,o/I, indicates the efficiency of an OTA; high
ratio means the efficient utilization of bias current and
dissipated power. In addition, very low output resistance
seriously deteriorates the performance of applications. As
shown in table 2, bias current should not be over a few

hundred pA to maintain the significant R, and efficiency.
Therefore, the maximum bias current of 300 pA is specified.

III. TUNING PROCESS

A. Concept of applied Artificial Neural Network

The general form of a bandpass biquad is composed of three
main parameters, which are the gain (K), pole frequency (w,),
and Q-factor (Qp) [7]. According to the experiment biquad,
there are three bias current (I;, I, and I5) to be adjusted. The
associate ANN, applied to utilize the studied biquad, is
operating in opposite to the actual circuit as the biquad’s
parameters are taken as input, which is employed to estimate
the corresponding bias currents. Therefore, the operation of
the trained ANN can be functionalized:

I K
I |=Fy|| o, (€]
I3 9,

where Fany is a virtual function representing the transferring
of biquad’s requirements to actual circuit’s parameters based
on the trained ANN. The training process treats a requirement
vector as an input and recognizes the vector of the
corresponding circuit’s parameters as an output.

B. Data Collection and Selection of Initial Training Set

To create a set of predefined bias points, the range of bias
current is quantized based on a desired quantizing resolution
(Ap), which is resulted in the minimum quantizing level (Lg).

Ly= o = Tmin | | 1)
Ap

Based on full combination of all bias currents, the total
amount of predefined records (TR) are simply:

Ty =L @

where n is the number of circuit’s parameters. Finally, the
actual quantizing resolution is:

A
AA — Zmax min ®)
Ly—1

According to eq. (3) and (5), the actual resolution is always
lower than or equal to the desire resolution. Fig. 3 presents the
organized distribution of bias points which are usually
generating the chaotic biquad points displayed in fig. 4. To
select an appropriate initial training set, the gathering cube
centered at the specific point representing the biquad
specification which placed as displayed in fig. 4. To initialize
the training set, the volume of the gathering cube can be
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increased or decreased until the amount of biquad points
inside the cube is equal to the size of training set.

.

2%s,
NaRL

202

R

Fig. 3. Predefined bias points

Q
Fig. 4. Predefined biquad points with gathering cube

C. Feasibility Analysis

As there are some biquad specifications that may not
possible to generated, the feasibility of the biquad’s
requirement can be simply indicated by observing the initial
training set. A biquad specification is feasible if and only if
the maximum percentage deviation in biquad parameters
observed from all records is less than or equal to the threshold.

D. Sequential Training and Utilization

As the training set is small and contains only samples that
are closed to the desired biquad, there is no division of data.
Therefore, the training of the deployed ANN is conducted
without validation and test. If there is significant training
error, it will be relieved through the sequential training
process presented by the flowchart in fig. 5.

Firstly, the ANN is trained with the initial training set.
Once the ANN is completely trained, it is utilized to estimate
the bias currents which are exploited to generate the practical
based on the HSPICE simulation. If the deviation in biquad’s
parameters to generated response is considered insignificant,
the process is finished. If not, the training set is updated if the
recently generated response is better than the worst in the
present training set. Then, the ANN is trained again. These
tasks can be looped forever if there is no second terminating
criterion which is the reaching of maximum loop that strongly
indicates the failure of tuning.
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Fig. 5. Sequential training
IV. EXPERIMENTS

A.  Implementation of Tuning Scheme

The key characteristics of the proposed process are the less
complex ANN which is sequentially trained with very small
training set. Therefore, the predefined bias point must be
collected with quite small resolution of bias current to cover
most of the operational region to tuned biquad. Key
parameters concerning the implementation of tuning scheme
are listed in table 3.

TABLE III
KEY PARAMETER OF SAMPLED TUNING SCHEME
Parameter Value
Resolution 10pA
Mini bias current 10pA
Maximum bias current 300pA
Size of predefined bias point 24,389 records

Final iteration of sequential training 20"

ANN type Cascade-forward (CF)
Number of hidden layer 1
Size of each layer except the output 10
Size of output layer 3
Training goal 0.1
Size of training set 20
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B. Tuning Example

The sample bandpass specification in table 4 is compiled by
the Chevyshev approximation, which is resulted in the desired
biquad parameters (K, w, and Q,) that are fed to the
implemented tuning scheme. At the 5% iteration or in 37
seconds, the tuning process successfully estimates /; = 99.57
pA, L =63.95 pA, and 5 = 211.11 pA. The test biquad is
then simulated based on these bias currents, which gives the
bandpass response shown in fig. 6. The key specifications are
measured and presented in the last column of table 4 alongside
the desired specification. Comparing biquad’s parameters,
very low percentage error is obtained, which leads to a well
satisfaction of filter’s requirements.

TABLE IV
SPECIFICATION OF BANDPA& ESPONSE
Requirement Desired Spec. Obtained Spec.
Filter type Band Bandp
Passband ripple <3dB <3dB
Stopband >20dB >20dB
Passband 300MHz - 550 MHz | 300 MHz - 551 MHz
Stopband <50 MHz, >3 GHz | <77 MHz, > 1.68 GHz
Biquad parameters Desired Spec. Obtained Spec.
K 1 0.997
, 2.55x10° rad/s 2.56x10° rad/s
5 406.2 MHz 407.4 MHz
0, 1.621 1.62
0 4
plm e B 300MHz/ \351 MHz ___ |
o
% 2204
b ( )
< | | J
| l
] I |
| |
| |
] | |
| l
0 : |
! :
M 10M 100M 1G 10G
Frequency (Hz)
Fig. 6. Band, response ob d from ial tuned ANN

C. Performance Analysis

The performance of the proposed tuning scheme is
expressed in terms of type-1 and type-II error. The type-I error
is occurred when the infeasible requirement can be
successfully tuned. If the process fails to tune a feasible
requirement, then the type-II error is happened.

In this case, the threshold to indicate the feasibility is 10%

and the successfully tuned responses must not deviate over
1%. According to the based OTA and its reasonable bias
range, 100 random biquad requirements are generated in the
following range; 0.8 < K < 2, 300 MHz < f, < 500 MHz, and
0.8 < 9, < 2. In table 5, the tuning results tunings are
cumulatively grouped by feasibility indications.

TABLE V
PERFORMANCE SUMMATION

Feasible Requirements Infeasible Requirements
Error<1% | Error>1% | Error<1% | Error>1%

73 0 0 27

As there is no wrong indication, the probability of type-I
(o) and type-II (B) errors are zero. Therefore, this tuning
scheme and the related feasibility analysis are considered very
effective.

V. CONCLUSION

A capacitorless all-OTA bandpass biquad is tuned via the
sequential trained ANN. A training set of a few tens samples
is selected from predefine bias points that are closing to the
biquad specification. With this selection scheme, the deployed
ANN can be less complex, which consequently requires little
tuning time. The feasibility of biquad requirements is
indicated by examining the maximum error of the training set.
A second-order bandpass requirement is picked as a sample
which is successfully tuned within a minute. Based on one
hundred tunings of random biquad requirements, the proposed
process is considered very efficient as there is no indication of
type-I and type-II errors.
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