
CHAPTER 5 EXPERIMENTAL RESULTS 
 
5.1 BIQUAD Filter Experiment 
The most common BIQUAD circuit consists of three factors which are an operational 
amplifier circuit (OTA), the input current of each OTA and C connected to ground; the 
example circuit is shown in Figure 5.1. The design of the example is common and basic 
configuration. Especially, the BIQUAD-filter has enough equation to solve the problem:  
 

2g

1C
2C

1g

3g

 
 

Figure 5.1 The experiment of BIQUAD circuit. 
 

A current-mode BIQUAD [13], composed of an ideal and a lossy current integrators, is 
considered as a subject of experiment, which is modified by removing both capacitors as 
shown in Figure 5.1. The composed OTAs are a simple single-stage CMOS OTA [11]. The 
missing capacitors are replaced with parasitic capacitances of an OTA. Therefore, C1 and C2 
virtually exist but cannot be controlled. Therefore, the controllable circuit’s parameters are 
limited to the bias current of each OTA. 
 
C1 and C2 are generated only at high frequency which includes the number of parasitic 
capacitances. Those parasitic capacitances can be adjusted by the bias current, and it is 
difficult to approximate the accurate values. Therefore, tuning of the bias current to generate 
the precise cut-off frequency or center frequency is required. The parasitic capacitances can 
be calculated as shown in Figure 5.2 below:  

 

 
 

Figure 5.2 OTA simplifications with C-Miller  
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According to Figure 5.2, there is one C generated between nodes number 5 and 7 which is 
considered to be the Miller’s theorem. Miller’s capacitance can divided into input and output 
stages as shown in Figure 5.3.   
 

 
 

Figure 5.3 Miller’s theorem divided capacitors  
 
From Figure 5.3, Z1 and Z2 can be calculated as the capacitances (C1 and C2) which are 
presented in the equations 5.4 and 5.8 respectively.    
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The constant value of K can be calculated by mLgRK  , where Sgm 100  and  kRL 1  
Therefore, the constant value of K is 1.0K . 
 
According to the BIQUAD filter in the experiment, each OTA can be simplified as shown in 
Figure 5.4.   
 

 
 

Figure 5.4 OTA-C selections from circuit experiment 
 

     

 
 

Figure 5.5 OTA simplifications without C-Miller  
 

Figure 5.5 presents the final OTA simplification; we are able to approximate the typical 
value of C1 and C2 of the experimental BIQUAD by following the equation. To simplify Ci

+, 
the result can be expressed by equation 5.11. 
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According to the related above equations, Co
- can be expressed as equation 5.14.  
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Therefore, Ci

- can be expressed in the form of equation 5.18. 
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Therefore, Co

+ can be expressed in the form of equation 5.20. 
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Finally, we can approximate C1 and C2 by equations 5.21 and 5.22 respectively.  
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If the capacitances are given by 1 pF, the typical value of C1 will approximately be 2.49 and 
C2 will be 2.6.  
 
This biquadratic equation can also be expressed in terms of the parameters K, ωp, Qz and Qp 
as follows: 
 

21

21

CC
gg

p                (5.23) 

 

1

2211
3 C

CggQ gp        (5.24)

   
5.2 Setting Experiment Parameters 
There are three different functions of composed transistors: active-loaded, differential-pair, 
and current source. Based on the AMS’s 0.35µ CMOS process, dimensions of the composed 
transistors are presented in Table 5.1. 
 
Table 5.1 Transistor dimensions. 
 

Function Width (µm) Length (µm) 
Active-loaded 7 0.35 

Differential-pair 12 0.35 
Current source 25 0.35 

 
The range of the bias current is stimulatingly estimated to 11 µA – 1.1 mA, which is 
approximately over 2 decades. However, this wide range only guarantees the saturated 
operation of all transistors. Therefore, to estimate the range of the bias current reasonably, 
the transconductance at DC (gm0), opened loop bandwidth (fb) of transconductance, and 
output resistance (Ro) is examined and summarized in Table 5.2.  
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Table 5.2 Performances of the OTA at specified bias current. 
 

I0 (µA) gm0 (µS) fb (MHz) Ro (kΩ) 

11 120 212.5 988 
55 381 502 278 

110 557 694 163 
550 1040 1350 41.7 

1100 1180 1770 10.6 
 
The ratio of gm0/I0 indicates the efficiency of an OTA; a high ratio means the efficient 
utilization of the bias current and dissipated power. In addition, very low output resistance 
seriously deteriorates the performance of applications. As shown in Table 5.2, the bias 
current should not be over a few hundred µA to maintain the significant Ro and efficiency. 
Therefore, the maximum bias current of 300 µA is specified. 
 
5.3 Sample Tuning 
The sample bandpass specification in Table 5.3 is compiled by the Chevyshev 
approximation, which results in the desired BIQUAD parameters (K, ωp and Qp) that are fed 
to the implemented tuning scheme. At the 5th iteration or in 37 seconds, the tuning process 
successfully estimates I1 = 99.57 µA,   I2 = 63.95 µA, and I3 = 211.11 µA. The test 
BIQUAD is then simulated based on these bias currents, which gives the bandpass response 
shown in Figure 5.6. The key specifications are measured and presented in the last column 
of Table 5.3 alongside the desired specification. Comparing the BIQUAD’s parameters, a 
very low percentage error is obtained, which leads to a well satisfaction of filter’s 
requirements.    
 
Table 5.3 Specification of bandpass response. 
 

Requirement Desired Spec. Obtained Spec. 

Filter type Bandpass Bandpass 
Passband ripple ≤ 3 dB ≤ 3 dB 

Stopband attenuation ≥ 20 dB ≥ 20 dB 
Passband 300MHz – 550 MHz 300 MHz – 551 MHz 

Stopband ≤ 50 MHz, ≥ 3 GHz ≤ 77 MHz, ≥ 1.68 GHz 

BIQUAD parameters Desired Spec. Obtained Spec. 

K 1 0.997 

ωp 2.55×109 rad/s 2.56×109 rad/s 

fp 406.2 MHz 407.4 MHz 

Qp 1.621 1.62 
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Figure 5.6 The response of bandpass obtained from sequentially tuned ANN. 
 

5.4 Massive Tuning 
5.4.1 Effect of the Sizes of Training Set 
The sample band-pass specification shown in Table 5.3 is tuned via the varied sizes of the 
training set, ten times per each size. Average errors are recorded in Table 5.4 which is fed to 
the analysis of variance (ANOVA) to indicate the significance of the varied sizes. 

 
Table 5.4 The response of varying the training set 
 

No. 
The average error of training set 

10 20 30 

1 0.529242 0.213770 0.515820 

2 0.225351 0.276198 0.586067 

3 0.282924 0.386446 0.315664 

4 0.413365 0.429341 0.392547 

5 0.511378 0.532021 0.484542 

6 0.621450 0.499951 0.369264 
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Table 5.4 The response of varying the training set (Cont.) 
 

No. 
The average error of training set 

10 20 30 

7 0.420530 0.227604 0.415627 

8 0.302668 0.603579 0.469140 

9 0.436234 0.419670 0.264486 

10 0.279890 0.313035 0.445083 

Average 
error 

 
0.4023032 

 

 
0.3901615 

 

 
0.425824 

 
 
The result of ANOVA is shown in Table 5.5. There is no indication of significant difference 
between the varied sizes of the training set as the p-value is very large and larger than the 
test α of 0.05. Therefore, the size of the training set is not significant as long as it is greater 
than 10 records. 

 
Table 5.5 One-way ANOVA: Average error versus size 
 
Source DF SS MS F P 

Size 2 0.0066 0.0033 0.23 0.796 

Error 27 0.3868 0.0143   

Total 29 0.3934    

 
5.4.2 Feasibility Analysis 
As there are some BIQUAD specifications that may not be possible to be generated, the 
feasibility of the BIQUAD’s requirement can be simply indicated by observing the initial 
training set. A BIQUAD specification is feasible if and only if the maximum percentage 
deviation in BIQUAD parameters observed from all records is less than or equal to the 
threshold. 
 
The performance of the proposed tuning scheme is expressed in terms of type-I and type-II 
errors. The type-I error occurs when the infeasible requirement can be successfully tuned. If 
the process fails to tune a feasible requirement, then the type-II error happens.  
 
In this case, the threshold to indicate the feasibility is 10% and the successfully tuned 
responses must not be deviated over 1%. According to the based OTA and its reasonable 
bias range, 100 random BIQUAD requirements are generated in the following ranges; 0.8 ≤ 
K ≤ 2, 300 MHz ≤ fp ≤ 500 MHz, and 0.8 ≤ QP ≤ 2. Figures 5.7 – 5.9 show tuning results of 
the varied training set of 100 trails which are sorted by a maximum initial error of the initial 
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training set. Each trial is numbered and its corresponding maximum initial and tuned errors 
are presented.  
  
According to the first case, there are 66 random requirements which suffer a maximum 
initial error of less than 10%, which are all successfully tuned as their maximum tuned error 
of less than 1%. The rest 34 random requirements are initiated with a maximum error greater 
than 10%, which consequently causes all associated tuning processes to fail as their 
maximum tuned errors are all greater than 1%. Therefore, no wrong indication occurs, and 
this makes the probability of type-I (α) and type-II (β) errors zero. 
 

 
 

Figure 5.7 The responded tuning of training set is 10 
 

 
 

Figure 5.8 The responded tuning of training set is 20 
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Figure 5.9 The responded tuning of training set is 30 
 

The second case also indicates no α and β in the same way as the first case but the number of 
feasible and infeasible requirements is different. 
 
Table 5.6 Summation of performance on threshold = 10% 

 

Size of 
training set 

Feasible Requirements Infeasible Requirements 

Error ≤ 1% Error > 1% Error ≤ 1% Error > 1% 

10 66 0 0 34 

20 64 0 0 36 

30 76 0 1 23 

 
In the last case which the size of the training set is 30, there is no wrong indication of 
feasible requirements but there is only one false indication of infeasible requirements. 
Therefore, the α is only 0.013 with no β. Table 5.6 summarizes performances of feasibility 
analysis when a threshold is equal to 10%. Interestingly, varying the training set does 
virtually not affect the α and β. Thus, the threshold of 10% is proved most suitable to 
indicate the feasibility. 

 
5.5 Comparison Experiments 
To satisfy the experiments, some similar cases are used to compare results which are the 
generally trained ANN [6] and Particle Swarm Optimization (PSO) [10].  
  
5.5.1 Sequentially Trained ANN versus the Generally Trained ANN [6] 
According to the previous literature [6], the ANN is generally trained which requires little 
tuning time because the circuit’s parameters are simply extracted as an output of the trained 
ANN but it is quite impossible in training with validation and test. Therefore, the trained 
ANN hardly provides solutions that precisely match the BIQUAD specifications. The ANN 
is sequentially trained with an updated small training set and is used to improve this 
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problem, and the training set is close to the specified BIQUAD parameters. The performance 
of both trained ANNs is compared in Table 5.7 which is tested at the same twenty BIQUAD 
specifications. 
 
Table 5.7 The percentage deviations of the Sequentially Trained ANN versus the Generally 

Trained ANN with the same random BIQUAD specifications  
 

No. Desired BIQUAD Generally 
Trained Error 

Sequentially  
Trained Error K ωp Qp 

1 0.8 2.3 1.4 17.98976 0.661758 
2 0.8 2.4 1.5 32.63592 0.122447 
3 0.8 2.7 1.6 23.13746 0.319451 
4 0.8 2.4 1.8 7.576389 0.311027 
5 0.9 2.3 1.6 69.64149 0.422467 
6 1.1 2.3 1.5 3.974655 0.544301 
7 1.1 2.5 1.6 28.5206 0.51097 
8 0.9 2.5 1.8 42.92956 0.54595 
9 1.2 2.7 1.4 9.501137 0.500463 

10 0.9 2.4 1.5 8.31236 0.366637 
11 1.1 2.4 1.7 14.24014 0.33402 
12 1.2 2.4 1.7 22.24305 0.158827 
13 1.2 2.4 1.4 3.469744 0.512314 
14 1 2.3 1.7 72.71483 0.405249 
15 0.9 2.4 1.6 36.71957 0.153991 
16 1.2 2.4 1.4 3.59438 0.629239 
17 1.1 2.5 1.4 6.024301 0.556684 
18 0.8 2.4 1.7 48.48321 0.272138 
19 0.9 2.7 1.7 15.23539 0.513762 
20 1.2 2.7 1.5 5.546565 0.345121 

 Aver Err 23.62453 0.409341 
 
Table 5.8 summarizes the performances of the generally trained model and sequentially 
trained model with the same random desired specifications. The results are very clear that 
the tuning parameters are quite the same but the percentage deviation of the sequentially 
trained model is close to goal than the generally trained model. It means that the sequentially 
trained model can provide more precise solutions than the generally trained model with the 
same specifications.  
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Table 5.8 The compared performances between the generally trained model and the 
sequentially trained model of ANN 

 
BIQUAD 

Parameters 
Desired 

Specification 
Generally 

Trained ANN 
Sequentially 

Trained ANN 
Gain (K) 1 0.9963 0.997 

Pole Frequency(ωp) 2.55×109 rad/s 2.56×109 rad/s 2.56×109 rad/s 

Frequency (fp) 406.2 MHz 407.4 MHz 407.4 MHz 

Quality Factor (Qp) 1.621 1.6205 1.62 

% deviation 0 23.62453 0.409341 

 
5.5.2 Sequentially Trained ANN versus the PSO based on a very small 
swarm 
Previously, there is the method which tunes a capacitorless all-OTA bandpass BIQUAD and 
its tuning by ANN, Particle Swarm Optimization (PSO). It finds the optimal part of swarm 
to optimize the BIQUAD specifications. Along the experiments which are compared with 
the same BIQUAD specifications, the results are shown in Table 5.9.  
 
Table 5.9 The compared performances between the Sequentially Trained ANN and PSO  

 
 
 
 
 

BIQUAD Parameters Desired 
specification 

Sequentially Trained 
ANN PSO 

Gain (K) 1 0.997 0.996 

Pole Frequency (ωp)  2.55×109 rad/s 2.56×109 rad/s 2.56×109 rad/s 

Frequency (fp) 406.2 MHz 407.4 MHz 407.38 MHz 

Quality Factor (Qp) 1.621 1.62 1.6187 


