Experimental Investigation on Heat Transfer and Flow Characteristics of R-134a during
Boiling inside a Multiport Microchannel Heat Sink

Mr. Phubate Thiangtham B.Eng. (Mechatronics Engineering)

A Thesis Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Engineering (Mechanical Engineering)
Faculty of Engineering
King Mongkut’s University of Technology Thonburi
2013

Thesis Committee

...................................................... Chairman of Thesis Committee

...................................................... Member and Thesis Advisor

...................................................... Member

...................................................... Member
(Prof. Somchart Chantasiriwan, Ph.D.)

Copyright reserved



Thesis Title Experimental Investigation on Heat Transfer and Flow
Characteristics of R-134a during Boiling inside a Multiport
Microchannel Heat Sink

Thesis Credits 12

Candidate Mr. Phubate Thiangtham
Thesis Advisor Prof. Dr. Somchai Wongwises
Program Master of Engineering

Field of Study Mechanical Engineering
Department Mechanical Engineering
Faculty Engineering

Academic Year 2013

Abstract

The heat transfer and flow characteristics during boiling of R134a refrigerant in a
multiport microchannel heat sink are experimentally investigated. Test section which is
a microchannel heat sink, is made of copper with 27 parallel rectangular channels with a
depth of 470 um, a width of 382 um, a length of 40 mm, and a fin thickness of 416 pum.
The experiments are performed at refrigerant mass fluxes of 400, 800 and 1200 kg/m?s,
the saturated temperatures of 13, 18 and 23 °C, heat fluxes ranging between 13.3 and
168.4 k W/m? and the inlet vapor quality ranging from 0.05 to 0.92. The results reveal
that the heat transfer coefficient increases with increasing the heat flux, saturated
temperature and inlet vapor quality. Moreover, mass flux has no significant effect on the
heat transfer coefficient. However, it is interesting to note the different trends of heat
transfer for low mass fluxes (i.e., 400 kg/m?s). This is may be due to a partial wall dry
out. The frictional pressure gradient increases with the increase of heat flux, mass flux
and inlet vapor quality, but decreasing saturation temperature. Finally, new correlations
are proposed for predicting the heat transfer coefficient and frictional pressure gradient
during flow boiling inside the microchannel.
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