

THE RUNTIME ESTIMATION FRAMEWORK FOR BLACK BOX SCIENTIFIC

APPLICATIONS

MISS SARUNYA PUMMA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF ENGINEERING (COMPUTER ENGINEERING)

FACULTY OF ENGINEERING

KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI

2013

The Runtime Estimation Framework for Black Box Scientific

Applications

Miss Sarunya Pumma B.Eng. (Computer Engineering)

A Thesis Submitted in Partial Fulfillment

of the Requirement for

the Degree of Master of Engineering (Computer Engineering)

Faculty of Engineering

King Mongkut’s University of Technology Thonburi

2013

Thesis Committee

……………………………………………… Chairman of Thesis Committee

 (Asst. Prof. Marong Phadoongsidhi, Ph.D.)

………………………………………………. Member and Thesis Advisor

 (Assoc. Prof. Tiranee Achalakul, Ph.D.)

………………………………………………. Member

 (Asst. Prof. Santitham Prom-on, Ph.D.)

………………………………………………. Member

 (Phond Phunchongharn, Ph.D.)

………………………………………………. Member

 (Pierre Vande Vyvre, Ph.D.)

Copyright reserved

 i

Thesis Title The Runtime Estimation Framework for Black Box Scientific

Applications

Thesis Credits 12
Candidate Miss Sarunya Pumma

Thesis Advisor Assoc. Prof. Dr. Tiranee Achalakul

Program Master of Engineering

Field of Study Computer Engineering

Department Computer Engineering

Faculty Engineering

Academic Year 2013

Abstract

The growth of data and computation in the past decade has brought about the needs for

cloud infrastructure. Cloud leverages the Internet as a tool through which remote

computers can share resources on-demand. The cloud infrastructure can be utilized as a

high performance computing (HPC) platform which contains flexible and excessive

computing resources. In order to efficiently run the HPC applications in the cloud, a

great deal of technical knowledge is required. One of the challenges is how to estimate

the runtimes of applications accurately because an inaccuracy in runtime estimation can

lower the overall performance of a computer system. Moreover, runtime is an important

attribute for tasks scheduling. For instance, most well known scheduling algorithms,

such as, Backfilling and Heterogeneous Earliest Finish Time (HEFT), use runtime to

determine the schedule of the tasks. In this thesis, we have proposed a runtime

estimation method for unknown-profile applications in the cloud computing

environment. Unlike other approaches, we also provide a procedure to collect the

profiles of applications, which are the metrics that represent the execution behavior of

an application. This allows our approach to predict the runtime of the HPC applications

even if the metadata is not provided. In order to predict a runtime of a workload, only

two steps are required. In the first step, the application will be classified into a class

based on the similarity of the execution characteristics. In our work, we have adopted

the Berkley's Dwarfs taxonomy to define the classes. The classification result will be

used to choose a runtime prediction equation for the workload. In the next step, the

runtime will be predicted by using the equation that is selected in the previous step. The

runtime prediction equations are constructed by using the Artificial Bee Colony (ABC)

and the linear regression techniques. In order to verify the practicality of our

framework, we predicted the runtimes of the HPC applications on three types of virtual

machines, General purpose, Compute Optimized, and Memory Optimized instances,

provided by Amazon EC2. Our method can yield low prediction error percentages in

most cases. Moreover, it can provide more accurate runtime prediction results in

comparison to the user-estimation method.

Keywords : Amazon EC2 / Berkley's Dwarfs / Cloud Computing / Job Scheduling /

Runtime Estimation

 ii

หวัขอ้วทิยานิพนธ์ การค านวณเวลาในการประมวลผลแอพพลเิคชนัเชิงวทิยาศาสตร์
หน่วยกิต 12
ผูเ้ขยีน นางสาวศรัณยา ภุมมา
อาจารยท่ี์ปรึกษา รศ. ดร. ธีรณี อจลากุล
หลกัสูตร วศิวกรรมศาสตรมหาบณัฑิต
สาขาวชิา วศิวกรรมคอมพิวเตอร์
ภาควชิา วศิวกรรมคอมพิวเตอร์
คณะ วศิวกรรมศาสตร์
ปีการศึกษา 2556

บทคดัย่อ

อตัราการเพ่ิมข้ึนของขอ้มูลและการประมวลผลในช่วงสิบปีท่ีผ่านมาน ามาซ่ึงความตอ้งการในการใช้บริการ
การประมวลผลแบบกลุ่มเมฆหรือคลาวด ์ทั้งน้ีระบบคลาวด์ใช้ระบบอินเตอร์เน็ตเป็นเคร่ืองมือในการรวม
ทรัพยากรคอมพิวเตอร์ไวด้ว้ยกนัเพ่ือตอบสนองความตอ้งการของผูใ้ช ้โดยระบบคลาวดส์ามารถถูกน ามาใช้
เป็นแพลตฟอร์มส าหรับการประมวลผลแอพพลิเคชนัท่ีตอ้งการทรัพยากรในการประมวลผลสูงได้ เน่ืองจาก
ผูใ้ชส้ามารถร้องขอทรัพยากรในการประมวลผลหรือจดัเก็บขอ้มูลไดต้ามความตอ้งการ อย่างไรก็ตามการ
ประมวลผลบนคลาวดต์อ้งอาศยัความรู้เชิงเทคนิคอย่างมาก ซ่ึงหน่ึงในปัจจยัท่ีควรจะตอ้งพิจารณาคือวิธีการ
ท่ีมีประสิทธิภาพในการค านวณเวลาท่ีใชใ้นการประมวลผลแอพพลิเคชนั เน่ืองจากความคลาดเคลื่อนในการ
คาดการณ์เวลาท่ีใช้ในการประมวลผลอาจส่งผลต่อประสิทธิภาพโดยรวมของระบบคอมพิวเตอร์ได ้
นอกจากน้ีตวัจดัล าดบังาน (Scheduler) ท่ีเป็นท่ีนิยม เช่น Backfilling และ Heterogeneous Earliest Finish
Time (HEFT) ใชเ้วลาในการประมวลผลเป็นตวัแปรท่ีส าคญัในการจดัล าดบังานภายในระบบ ดงันั้นงานวจิยั
น้ีจึงน าเสนอวธีิการในการค านวณเวลาในการประมวลผลส าหรับแอพพลิเคชนัเชิงวิทยาศาสตร์บนระบบ
คลาวด ์โดยแอพพลิเคชนัดงักล่าวมกัจะตอ้งการทรัพยากรในการประมวลและจดัเก็บขอ้มูลจ านวนมาก ทั้งน้ี
วธีิการท่ีน าเสนอครอบคลมุไปถึงวธีิการเก็บโปรไฟล ์(Profile) ของแอพพลิเคชนัซ่ึงถูกจดัเก็บในรูปแบบของ
เมตริก (Metrics) ซ่ึงใชใ้นการอธิบายลกัษณะเฉพาะในการประมวลผลของแอพพลิเคชนันั้นๆ ทั้งน้ีการเก็บ
โปรไฟลข์องแอพลิเคชนัจะท าใหส้ามารถคาดการณ์เวลาในการประมวลผลไดโ้ดยไม่ตอ้งอาศยั เมตาดาตา้
ของแอพพลิเคชนั (Metadata) ซ่ึงการค านวณเวลาในการประมวลผลส าหรับงานวิจยัน้ีประกอบด้วย 2
ข ั้นตอนหลกั โดยในขั้นแรกแอพพลิเคชนัจะถูกแบ่งออกเป็นคลาส (Class) โดยพิจารณาจากลกัษณะเฉพาะ
ในการประมวลผล ทั้งน้ีคณะนกัวจิยัไดอ้า้งอิงการแบ่งคลาสตามงานวจิยัของมหาวทิยาลยัแคลิฟอร์เนีย เบิร์
กลีย ์ซ่ึงแบ่งแอพพลิเคชนัเชิงวทิยาศาสตร์ออกเป็นหมวดหมู่ซ่ึงถูกเรียกว่า คนแคระ (Dwarf) ตามลกัษณะ
การประมวลผลของแต่ละแอพพลิเคชนั ทั้งน้ีผลการแบ่งคลาสจะถูกน าไปใช้ในการเลือกสมการในการ
ค านวณเวลาในการประมวลผลของแอพพลิเคชันในขั้นตอนต่อไป สมการดงักล่าวถูกสร้างข้ึนโดยใช้
อลักอริทึมการจ าลองฝูงผึ้ง (Artificial Bee Colony หรือ ABC) และการวเิคราะห์การถดถอยเชิงเส้น (Linear
Regression) ส าหรับการประเมินประสิทธิภาพของวธีิการท่ีน าเสนอนั้น คณะนกัวจิยัไดน้ าวธีิดงักล่าวไปใช้

 iii

ในการค านวณเวลาในการประมวลผลของแอพพลิเคชนัต่างๆ บนเคร่ืองคอมพิวเตอร์เสมือน (Virtual
Machine) 3 รูปแบบซ่ึงใหบ้ริการโดยอเมซอนอีซีทู (Amazon EC2) คือ เคร่ืองแบบทัว่ไป (General Purpose)
เคร่ืองส าหรับการค านวณท่ีใชห้น่วยประมวลผลสูง (Compute Optimized) และเคร่ืองส าหรับการค านวณซ่ึง
ใช้หน่วยความจ าสูง (Memory Optimized) ทั้งน้ีวิธีการท่ีน าเสนอสามารถคาดการณ์เวลาท่ีใช้ในการ
ประมวลผลดว้ยความคลาดเคลื่อนต ่า รวมทั้งยงัมีความแม่นย ามากกวา่วธีิท่ีใหผู้ใ้ชเ้ป็นผูป้ระมาณเวลาในการ
ประมวลผลอีกดว้ย

ค าส าคญั : การค านวณเวลาในการประมวลผล / การจดัล าดบังาน / คนแคระของเบิร์กลีย ์/ ระบบคลาวด ์

/ อเมซอนอซีีทู

 iv

ACKNOWLEDGEMENTS

This project could not have been successful without the help of my advisor, Assoc.

Prof. Dr. Tiranee Achalakul. She has given me a great deal of useful advice as well as

support throughout. The motivation she gave me has driven me to work hard on this

project. I would like to thank her for being the guiding light when I was lost. Without

her, this project would have been a painful ordeal.

I would like to express my sincere gratitude to Mr. Kittituch Manakul. He was always

my mentor who helped me from the beginning to the end of this project. Comments and

feedbacks from his own experience and his broad knowledge were extremely useful for

me. Apart from technical and theoretical supports he gave, he was also an emotional

supporter. Thank you very much for helping me through the tough times.

I also would like to express my appreciation to Mr. Sylvain Chapeland, my mentor at

CERN, who provided the computer facilities as well as the applications for me to run

the experiments at CERN. Besides, he gave such valuable advice on how this project

could nicely fit in the ALICE O2 project.

Moreover, I would like to thank the network laboratory's administrators: Mr. Nipat

Sukittiwong, Mr. Warat Puengtambol, and Mr. Chaiwat Kaewyai. They kept and

maintained the computer resources in perfect shape for the experiments that could run

with almost zero downtime.

Furthermore, I would like to state that this project was funded by the Thailand Research

Fund-Master Research Grant (TRF-MAG) in collaboration with the Venture Catalyst

Company. The computer facilities, equipment, and cloud computing costs were

supported by this grant.

Lastly, I would like to thank you my family and my lab mates at the Concurrent

Algorithms and Scalable Technology Lab (CAST Lab) who always cheered me up

when I was frustrated. Without these people, obstacles and problems would have been

impossible to solve.

 v

CONTENTS
PAGE

ENGLISH ABSTRACT i

THAI ABSTRACT ii

ACKNOWLEDGEMENTS iv

CONTENTS v

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS viii

LIST OF TECHNICAL VOCABULARY AND ABBREVIATIONS ix

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 RELATED WORKS AND BACKGROUND STUDIES 3

 Related Works 3 2.1

 Background Study 6 2.2

CHAPTER 3 RUNTIME ESTIMATION FRAMEWORK 12

 Workload Profiles Collecting 13 3.1

 Workload Classification Model 15 3.2

 Runtime Estimation Model 19 3.3

CHAPTER 4 EXPERIMENTS AND RESULTS 31

 Experiment on Trained Benchmarks 31 4.1

 Experiment on Untrained Benchmarks 37 4.2

CHAPTER 5 THE ADOPTION OF RUNTIME PREDICTION FRAMEWORK

IN ALICE O2 PROJECT 41

 Initial Experiment and Result for White-Box Applications 43 5.1

 Initial Experiment and Result for Black-Box Applications 44 5.2

CHAPTER 6 CONCLUSION 49

REFERENCES 51

CURRICULUM VITAE 54

 vi

LIST OF TABLES

TABLE PAGE

3.1 The Class of Dwarfs Used in This Framework 12
3.2 The List of Metrics 13
3.3 The List of Benchmarks 15
3.4 Mapping Between Benchmarks and Dwarfs 16
3.5 Instances of Amazon Web Service that Used in the Framework 20
3.6 Arrays for ABC 23
4.1 Actual Runtimes of Trained Benchmarks 31
4.2 Classification Results of Trained Benchmarks 34
4.3 Runtime Prediction Results for Trained Benchmark 34
4.4 Actual Runtimes of Untrained Benchmarks 38
4.5 Runtime Prediction Results for Untrained Benchmarks 38
5.1 Results from Running TPC Laser Events with Different Input Sizes 44
5.2 Runtime Prediction Results for Black-box Application 46

 vii

LIST OF FIGURES

FIGURE PAGE

2.1 ABC Algorithm 11
3.1 The Overall Methodology 12
3.2 Benchmark Profiles Collecting Workflow 14
3.3 Kiviat Diagrams of MICA Metrics 17
3.4 ABC Steps 22
3.5 Structure of ABC's Solution 24
3.6 Percentage of R-squared Values of Dwarfs on Virtual Machines 29
4.1 Kiviat Diagrams of Sample and Full-run Data 33
4.2 Runtimes of Trained Benchmarks in Percent for General Purpose Machine 35
4.3 Runtimes of Trained Benchmarks in Percent for Compute Optimized Machine 36
4.4 Runtimes of Trained Benchmarks in Percent for Memory Optimized Machine 36
4.5 Runtimes of Untrained Benchmarks in Percent for General Purpose Machine 38
4.6 Runtimes of Untrained Benchmarks in Percent for Compute

 Optimized Machine 39
4.7 Runtimes of Untrained Benchmarks in Percent for Memory

 Optimized Machine 39
5.1 Data Flow of ALICE 41
5.2 The Position of Scheduler 42
5.3 Runtime Estimation Model Construction for Known-Source Code Application 43
5.4 Linear Relationship between Input and Runtime 44
5.5 Runtimes of TPC Laser Events in Percent 47

 viii

LIST OF SYMBOLS

SYMBOL UNIT

< Less than sign -

> Greater than sign -

 Less than or equal sign -

≥ Greater than or equal sign -

^ And operation -

˅ Or operation -

I/O Input and output -

R-squared Coefficient of determination in statistics percent

Z Standard score in statistics -

 ix

LIST OF TECHNICAL VOCABULARY AND

ABBREVIATIONS

ABC = Artificial Bee Colony

ALICE = A Large Ion Collider Experiment

Amazon EC2 = Public cloud service provided by Amazon.com

CERN = The European Council for Nuclear Research

Cloud = An emerging computing platform with on-demand services

CPU = Central processing unit of a computer

DAQ = Data acquisition

Dwarf = Computational kernel representing a type of execution pattern for

scientific applications

GA = Genetic Algorithm

GPU = Graphics processing unit of a computer

HEFT = Heterogeneous Earliest Finish Time

HPC = High performance computing

K-NN = k Nearest Neighbor

MICA = Microarchitecture-Independent Workload Characterization

CHAPTER 1 INTRODUCTION

At present, cloud computing is getting more and more popular because of its ability to

provide the user with resources automatically in a short amount of time. Since cloud

combines computer resources, such as CPU, memory, and storage, into a virtual place

called a resource pool, a size of computer resources is changeable depending on

requirements of user. Moreover, the computational resources can be accessed from

anywhere via the Internet and are charged as utilization rate of computing power,

bandwidth, and storage. For these reasons, cloud computing can satisfy the immediate

need of low cost computing resources.

The cloud platform can be categorized into three main models: public cloud, private

cloud, and hybrid cloud. A public cloud provides various types of service models that

charge per usage. Thus, the cost for a use of a public cloud is relatively low because

there is no purchasing of machines and no maintenance costs. However, an execution

performance of public cloud cannot be controlled because the computer resources that

are provided in the public cloud are not 100% dedicated to a single user. Anyone who

has a user account can access the public cloud’s network via the Internet. On the

contrary, a private cloud entails high costs for machine purchasing and maintenance.

Hybrid cloud, which is a combination between public and private clouds, is thus

introduced in order to gain more benefits from both types of cloud to improve the

execution performance and cut down the costs.

All the cloud computing platforms mentioned above could be utilized as the high

performance computing (HPC) platforms that support scientific application executions.

The scientific applications, which can be categorized into the compute-intensive

application and the data-intensive application, usually consume a great deal of computer

resources and execute for a long period. The benefit of using the cloud is to improve the

performance of execution with regards to optimizing the execution time and costs.

To run the HPC applications in the cloud environment efficiently, a smart job scheduler

is required. Most scheduling algorithms need the runtimes of the jobs in order to assign

them to execute on the appropriate machines. For example, Backfilling [1] and

Heterogeneous Earliest Finish Time (HEFT) [2] require runtime in their scheduling

processes. Thus, the application runtime is an important attribute for the scheduler.

However, predicting the runtimes of the applications in a computer system is a difficult

task because much technical knowledge is needed. To avoid the difficulty, some

computer systems ask the runtime from the user. Although this method is easy, it is

inaccurate and inefficient because the user almost always overestimates the runtimes of

their applications [3]. In addition, some existing runtime estimation methods assume

that the same user usually runs the same application in the system [4]. Therefore, a user

name and a project are used as a key. If the application submitted to the system has the

same key, the runtime is calculated from the actual runtime of the previous run.

However, this assumption can be violated easily because it is not always true that the

same user will run the same jobs every time. Moreover, the key used in this method is

not informative. It does not contain any running behavior of the application.

We then are proposing a methodology to estimate the runtime of the applications in the

cloud computing environment efficiently. Unlike other approaches, we use the

informative application characteristics, which contain the execution behavior, to predict

 2

a runtime of the application. When the application is submitted to the system, these

characteristics will be sampled by using the workload characterization tools, namely

Mica and Perf. Our framework consists of two components: the workload classification

model and the runtime prediction model. These two components work in sequence. The

input of both components is a set of MICA and Perf metrics. The workload

classification model is responsible for categorizing the application into a certain class

based on its characteristics. The characteristics of the applications in each class are

referred from the Berkley's Dwarfs taxonomy. In our work, we have a separate runtime

prediction model for each class of applications on a specific type of virtual machines.

To select the appropriate model for the application, the classification result is used. The

prediction model is a mathematical model, built by using the Artificial Bee Colony

(ABC) optimization with the linear regression technique. With our framework, the

runtime of the workload can be simply predicted without any additional information

about the application.

This report is structured as follows: Section 1 has stated introduction of the study,

Section 2 presents the related works and the background study along with the

discussions, Section 3 describes our proposed runtime estimation methodology, Section

4 shows the experiments and results, and Section 5 is the conclusion.

CHAPTER 2 RELATED WORKS AND BACKGROUND

STUDIES

In this section, a survey of the related works and background knowledge is presented.

The first sub-section gives details of related works. The other section provides

information on topics and techniques that have been adopted in our framework.

 Related Works 2.1
The runtime of the application is an important attribute in most scheduling schemes.

Several scheduling algorithms, for example, Backfilling, and Heterogeneous Earliest

Finish Time (HEFT), use the runtime in order to optimize the execution costs, such as,

execution time, monetary cost, and energy consumption. Backfilling [1] is one of the

First Come First Serve (FCFS) algorithms that allow lower priority applications to be

scheduled while the first job in a queue (highest priority) is waiting for the computing

resource. Since Backfilling has to fill short jobs in the available slots without delaying

high priority jobs, the runtimes of the applications are required. HEFT [2] is a well-

known workflow-scheduling algorithm that schedules tasks based on priorities. Similar

to the Backfilling algorithm, HEFT needs the runtimes in order to calculate the

priorities of nodes in the workflow. Without the accurate runtimes, the scheduling

results might not be satisfactory.

In a computer system, the runtimes of the applications, which are submitted to the

system, is usually provided by users. However, the user almost always overestimates

the runtimes, which can violate the overall performance of the system [3]. Tang et al.

[4] analyzed the job trace from Argonne's Intrepid and found that there were about 50%

of 275,000 jobs in the system that used only half of the user-estimated runtime to finish

their executions. They then proposed a methodology to adjust the user-provided runtime

in order to improve the performance of the supercomputer system. They determined the

accuracy of the user-estimated runtime by using R = tact/tuser, where tact is the job's actual

runtime and tuser is the user-estimated runtime. The range of R was between 0 and 1. If

R was close to 1, then the user-provided runtime was highly accurate. The equation to

adjust the runtime was simple: tschd = tuser × A, where tschd, tuser, and A were the time used

by the scheduler, the time provided by user, and the adjustment factor, respectively. In

order to determine the value of A, four runtime adjustment schemes were presented. The

adjustment schemes searched for the similar application based on keys (user name of

the user who submitted jobs and project name) from the historical data in the limited

time frame and calculated the value of A by averaging the R-values of the similar

applications. This proposed work could significantly improve the runtime and the

overall performance of the system. However, the method just assumes that the same

user will always submit the same project to the system. This assumption cannot be

applied in the cloud environment since it cannot cover all the usage scenario of the

cloud. For example, if user A employs the public cloud resources to run different tests,

the runtime of any applications submitted by user A cannot be predicted. Moreover, the

attributes used in the runtime prediction do not actually represent the characteristics of

the application. To solve this, more informative attributes are needed.

Krishnaswamy et al. [5] proposed a method to estimate the computation times for data-

intensive applications. Rather than using the user name and the project name to

determine the similarity between two applications, they adopted the rough sets theory,

which could handle the uncertainty in data. The rough sets theory used the historical

 4

data to find the subset of attributes that strongly related to the runtimes. The output of

rough sets was a similarity template. A submitted application would be compared to the

historical data using the similarity template. Then, the runtime for the application would

be a mean of the runtimes of the applications in the same category. The work could

yield a high accuracy for the data mining and high-performance computing applications.

Nevertheless, this work did not explicitly present the set of attributes that were used in

the similarity template building so the runtime prediction results may not be precise, in

the case that the historical data of some applications are limited. In other words, the

results can only be good in the scenario where most applications are repeatedly

executed.

In line with previous work, Smith et al. [6] implemented their runtime prediction

framework based on the similarity templates of the historical applications. The template

was used to classify applications into groups. The attributes used for classification were

a set of workload characteristics obtained from the computer system. The search

techniques, which are greedy and genetic algorithms, were applied to the framework for

determining the similarity template. The runtime of the application could be derived in

two ways: using the mean of the runtimes or using the linear equation to calculate the

runtime. The linear equation used in this work simply established the relationship

between runtime and number of compute node requested by user: runtime = aN + b,

where a and b were the coefficients. Notice that the coefficients in linear equations were

different among different categories. In this work, the application might belong to more

than one category. Therefore, the estimated runtime with a smallest value of confidence

interval was selected as an application runtime. Since different computer systems may

contain different sets of characteristics, the algorithm cannot guarantee that the

prediction performance of the framework will be good if certain attributes are missing.

The case-based reasoning approach was presented in the work of IBM Canada Lab. Xia

et al [7] calculated the runtime from the historical information stored in the form of

cases. In this work, the cases were used to determine the similarity between the

applications and computers. The cases were defined by using the TA3 algorithm, which

was a case-based reasoning approach. TA3 classified the cases based on the similar

runtime assumption determined by a standard deviation. For example, two applications

that had the similar runtimes on the similar machines would be considered to be similar.

A case was represented in a data record that contained the job and machine

characteristics and a priority of the case. The cases priority was used to select the

runtime of the application in the case that the application was categorized into many

cases. To estimate the runtime of the new application, the k-nearest neighbor algorithm

was adopted. It categorized the application into the groups of applications that provide

the smallest Euclidean distance. Then, the runtime was the average value of the

runtimes in the case. This approach was experimented on a real system of IBM to

schedule Functional Regression Tests (FRT), which required a frequent test on various

platforms. It could obtain high runtime estimation accuracy and achieve higher system

performance. One drawback of this approach is the certain number of cases is not

predefined. The number of cases may grow without a boundary, which can deteriorate

the performance of the system. Therefore, the policy to control the number of cases

must be well defined.

The previous works used the application-oriented approach that directly employed the

application information, i.e. user name and project name, for runtime prediction. Zhang

 5

et al. [8] proposed a different method, which is the resource-oriented approach, to

predict the runtime of the workloads in a grid environment. The resource-oriented

method estimated the runtime by adopting the prediction information of the future

resources allocation. This approach exploited the benefit of grid that the information of

resources could be obtained from Grid Information System (GIS). Only the information

of the CPU load was used in this work. Therefore, this framework proposed a method to

predict the number of CPU loads of the applications in grid. The complex time series

model was adopted in CPU loads prediction. Once the number of CPU loads was

obtained, it was fed to the mathematical model to predict the estimated runtime. The

simulation of the framework showed excellent runtime prediction results in the grid

environment. However, this method cannot be applied to the cloud environment since

the cloud does not allow users to access any hardware event.

From all the related works, the general model for runtime prediction approaches

comprises 2 main parts: workloads similarity identification and runtime estimation.

Most approaches adopt the classification or clustering technique in applications

similarity determination. However, certain sets of attributes used in classification or

clustering are not explicitly defined in some approaches. This can result in missing of

data attributes and subsequently can affect to the performance of workload similarity

identification and runtime prediction. Therefore, a common attributes set, which can be

collected by using standard method, should be defined. Moreover, some attributes, for

example, user name and project name, do not have direct impact on the runtime of the

application. This kind of attributes can be used only in the case that users always run the

same application in the system. Therefore, the set of attributes or metrics should

actually represent the characteristic of the application, for example, data movement

pattern and execution behavior.

In the runtime estimation step, a mean of the runtimes of the similar applications is

generally used. It is easy to be determined, but may not be precise. As mentioned above,

a user name and a project name do not truly relate to a runtime. Therefore, the average

runtime of the application submitted by the same user with the same project name

cannot ensure that the runtime of the applications will be the same.

Similar to the general runtime prediction approach, our runtime estimation framework is

also divided into two main parts: workload similarity determination and runtime

estimation. In workload similarity determination, we employed a set of performance

metrics, which can be collected by the MICA [13] and the Perf tools. These metrics are

allowed to be collected on the cloud platform. They can capture the execution behavior

of the applications, of which data is more informative than attributes used in the related

works. The metrics are used to categorize an application into a certain class. We used

the taxonomy of Berkley's Dwarfs [14] to define the classes. The taxonomy categorizes

the high performance computing applications into 13 classes based on the data transfer

and running patterns. However, we implemented only seven classes of the dwarfs

because we cut out some classes that give the redundant characteristic. More detail will

be provided in the next subsection.

In our work, we used the linear regression equations to estimate the runtime of the

application. We built a separated runtime prediction model for each class of dwarfs and

for a specific type of virtual machines in the cloud environment. Therefore, there were

seven possible runtime prediction models for the application to select. The classification

 6

information from the previous step is used to select the runtime estimation model. For

example, if the runtime of the application A on the machine M is required and the

application A is classified into class C, then the runtime estimation model for class C on

machine M is selected.

Our methodology can be used to predict the runtime of the application on the virtual

machines in the cloud environment efficiently. Since we also provide the method to

collect the data attribute used in runtime prediction, the problem of attribute missing can

be solved. Moreover, we used the more informative data attributes in application

similarity identification step. Therefore, this framework can be used to predict the

runtime of the application without having to know any metadata of the workload.

 Background Study 2.2
In order to implement the mechanism to predict the runtime of the scientific application

in the cloud environment, we need to review the Amazon's cloud services, the

application's performance measurement tool called Microarchitecture-Independent

Characterization or MICA, the 13th Berkley's dwarfs, and the optimization technique

used in model construction phase. Details of each study will be expressed and discussed

one by one. Moreover, the method and its package that were adopted in our work will

be presented in the sub-sections below.

2.2.1 The Public Cloud: Amazon Elastic Compute Cloud

The purpose of this project was to estimate the runtime of the application on the cloud.

The services on the public cloud computing were then studied.

Amazon Web Service (AWS), Microsoft Azure, Rackspace, and Newservers are a few

of well-known cloud service providers. These cloud providers offer the infrastructure as

a service (IaaS) to the users. NewServers is the only one that provides physical cloud

computing while others offer the virtual machines. Platform Computing Corporation

[9], an IBM company, tested and measured the quality of each cloud provider in many

aspects against the standard benchmarks. The instances that are likely to be the user’s

choice for running high performance computing (HPC) applications were used in the

experiments. From the testing results, it turned out that Amazon EC2's instances

outperformed others in almost all benchmarks. Even though the price is the most

expensive, it is worth of investment [9].

In public cloud, the computing performance is unpredictable because a physical

machine is shared among users. According to the testing results of Platform Computing

Corporation mentioned in the previous paragraph, the public cloud that we concerned is

Amazon EC2. The instance type of Amazon EC2 can be divided into six categories

[10]; standard instances, micro instances, high-memory instances, high-CPU instances,

cluster compute instances, and cluster GPU Instances. Each type of instances has

different capacities – memory, CPU (EC2 compute unit), storage, I/O performance, and

CPU utilization percentage. Details on each type of instances are as follows:

The Standard instances provide a proper proportion between memory and CPU for

general application, and they limit the CPU utilization to be a maximum at 50 percent

for a single processor core [11]. The high-memory and high-CPU instances have high

capability specifically for high throughput applications and compute-intensive

applications, respectively. The Micro instances are suitable for an application that does

 7

not require high throughput because EC2 computes units can burst for a short period

which means they allow high CPU utilization percentage only in a short period. The

Cluster Compute instances (CCI) are suitable for HPC application because of a large

number of computing units and high network performance. The Cluster GPU instances

are like having extra graphics processing units (GPUs) attached to the Cluster Compute

instances, therefore; they are well suited for HPC applications and also media

processing applications.

In general, cloud service providers offer two purchasing alternatives for cloud instances;

on-demand instance and reserved instance [12]. The on-demand instances are charged

according to the per-hour basis usage rate while another instance type uses the advance

payment policy. The on-demand instances will be more convenient but more expensive

than the reserved instances. However, users will need a good plan to utilize the reserved

instances.

The virtual machine instances used in our platform are the high-memory, the high-CPU,

and the general-purpose instances in the Amazon Web Service.

2.2.2 Microarchitecture-Independent Workload Characterization: MICA

In order to estimate the runtime of an application, its profile is needed to be collected. In

this work, we adopted MICA metrics as the application's attributes that will be used in

runtime prediction.

The MICA [13] project is the work of Hoste and Eeckhout from Ghent University.

MICA is a pin tool, which is a computing analysis tool, for capturing the profile of the

workloads on the computer systems. Unlike most characterization tools, MICA is

microarchitecture independent. With MICA, the profiles of the specific workload on the

different hardware architecture are the same. However, the workloads are required to be

compiled by the same compiler and run on the same operating system.

MICA applied a principal components analysis (PCA) in collaboration with a genetic

algorithm (GA) in order to find the parameters, gathering by the binary instrumentation

tools, that can represent the microarchitecture-independent characteristics of the

workloads. From the total of 47 characteristics, only eight of them were obtained:

1. Probability of a register dependence distance 16

2. Branch predictability of per-address, global history table (PAg) prediction- by-

partial-matching (PPM) predictor

3. Percentage of multiply instructions

4. Data stream working-set size at 32-byte block level

5. Probability of a local load stride = 0

6. Probability of a global load stride 8

7. Probability of a local store stride 8

8. Probability of a local store stride 4,096

The MICA project were experimented on 118 benchmarks from 6 benchmark suites.

The results showed that the 8 microarchitecture-independent metrics could efficiently

characterize the workloads. Moreover, MICA could provide more information and

accuracy than the microarchitecture-dependent workload characterization tools.

 8

In our work, MICA would be used for capturing the characteristic of the dwarfs and the

benchmarks. The eight metrics would be adopted in the workload classification model

training phase and the runtime equations construction phase. Moreover, they would also

be used as the input of both workload classification model and the runtime estimation

model.

2.2.3 Berkeley's Dwarfs and Benchmark suites

To select the appropriate runtime estimation model for the predicting the runtime of the

application, the application has to be classified into a class. The classification results

would be used to choose the runtime equation for the application. The classes of the

application defined in our framework are referred from the Berkley's Dwarfs taxonomy

[14].

In the year 2006, the researchers at the University of California at Berkeley discovered

that the scientific applications generally have the similar computation patterns and data

movements which should be categorized into a certain number of types. The Berkeley's

Dwarfs, which are the classes of scientific applications, were then introduced. The

similarity in computation behavior and data flow was used to define the membership in

the class. However, there was no certain algorithmic calculations or numerical methods

defined in each class since the applications with similar behaviors can be implemented

differently. Currently, there are thirteen dwarfs [15]. Details of each dwarf are

explained below.

Dense linear algebra (dense): the data is appropriate to be represented as the dense

matrices/vectors. This kind of application generally has the unit-stride data access;

meaning that the elements of array are read/written in sequence. Examples of dense

linear algebra application are block tri-diagonal matrix and lower-upper symmetric

Gauss-Seidel.

Sparse linear algebra (sparse): the data generally contains a large number of zero

values. Therefore, the data is stored in the special format rather than the simple array in

order to improve the efficiency of data access. The formats, for example; compressed

sparse row matrix (CSR), compressed sparse column matrix (CSC), and dictionary of

keys (DOK), create a list of the positions of the non-zero elements and store them in

another array. The conjugate gradient application is an example of sparse linear algebra.

Spectral methods (spectral): the data for the spectral methods is transformed to the

frequency domain from the time or spatial domain. The execution usually involves add-

multiple operations and some specific data transformation pattern. Such computing

pattern is called 'multiple butterfly stages'. The application that can be categorized in the

spectral methods is Fourier transform (FFT).

N-body methods (nbody): the N-body methods compute the interactions between the

data points in each time step. The n-body can be implemented in either particle-particle

or hierarchical particle approach. The difference between the two approaches is

interactions calculation. For particle-particle method, each data point depends on all

other points, whereas, for the hierarchical particle method, each point depends on

multiple points. The N-body simulation in astrophysics, which studies movement of

bodies in the universe, is an example.

 9

Structured grids (sgrid): the data points are stored in a simple grid and updated through

time. In each time step, the value of each point is calculated by using the values of

neighbors. One example of the structured grids is Multi-Grid, Scalar Penta- diagonal.

Unstructured grids (ugrid): unlike the structured grids, the unstructured grids store data

points in the data structure, such as a linked list where the locations of data and the

neighbor are tracked. The updates of all data points involve large indirect memory

references since the locations of the points have to be looked up from the list before

updating. Unstructured adaptive is an example of unstructured grid.

MapReduce (mapred): the model comprises of two execution phases – map and reduce.

The map function performs the data filtering and sorting, while the reduce function

aggregates the data. In the map phases, the tasks are independent, i.e., no

communication is required between the working processes. In contrast, the global

communication is important in the reduce phase. The example of MapReduce is a

Monte Carlo application.

Combinational logic (clog): the combination logic applications perform bitwise

operations on the data, which can achieve high computing throughput. This kind of

applications repeatedly performs simple operations on a large amount of data. An

example is cyclic redundancy check.

Graph traversal (grapht): data is represented in graphs. In order to perform a

computation or search, the algorithm traverses through to a graph. Due to the structure

of a graph, visiting nodes in a graph involves a great deal of random memory accesses.

Examples of this include breadth-fist search and bitonic sort.

Dynamic programming (dprog): this approach solves a problem by dividing it into the

smaller sub-problems. The sub-problems are solved in sequence from the smallest to the

largest. The solution for the larger problem requires the answers of the smaller ones.

The well-known problem, which the dynamic programming can be applied, is 0-1

knapsack.

Backtrack & branch-and-bound (bb): this approach is suitable for searching the optimal

solution for the problem with massive search space. The branch-and-bound divides the

search space into a smaller region and finds the solution candidates from the sub-

regions. The A-start algorithm is a well-known branch-and-bound algorithm.

Graphical models (graphic): similar to the graph traversal approach, the data for the

graphical models is represented in graph. Nodes and edges of the graph represent the

problem's variables and the conditional dependencies, respectively. Examples are

Bayesian networks and Hidden Markov Models.

Finite state machines (fsm): the behavior of the algorithm is defined in stages. The

change of a current stage depends on input of a triggering event or a condition.

The release of the Berkeley's Dwarfs taxonomy results in the implementation of Dwarfs

benchmark suites. According to the Berkeley's research [14], some of the benchmarks

in NAS Parallel Benchmark (NPB) [16], from NASA, could be categorized as Dwarfs.

NPB provides the parallel numerical aerodynamic simulation programs for testing the

 10

performances of HPC platforms. NPB can only be run on multicore CPUs platform. In

addition, the programs in NPB imitate the computation behavior and data movement in

the computational fluid dynamics applications. For each application, the size of a

problem, which is dependent to the input size, is divided into the predefined classes

[17]: 1) S - small size, 2) W - legacy workstation size, 3) A, B, C - standard size (4

times bigger from one class to another), and D, E, F - large size (16 times bigger from

one class to another).

Rodinia benchmark suite [18] was implemented by a group of researchers at University

of Virginia. This benchmark suite consists of the diverse range of applications and

kernels that cover six classes of Berkeley's Dwarfs [19]. The classification of dwarfs

was based on the dwarf taxonomy given by Berkeley. The performance of the

benchmark on the parallel platforms, which are multicore CPUs (OpenMP) and GPUs

(CUDA), was measured.

In 2010, Berkeley released a Testbed for Optimization ResearCH or TORCH

benchmark suite [20]. TORCH comprises 13 different classes of kernels written in C

and MATLAB. Each class in the benchmark represents one of the Berkeley's Dwarfs.

Similar to other benchmarks, TORCH were tested in various aspects including

scalability, solution verification, and solution quality. Moreover, each kernel in the

benchmark suite was mapped to the existing benchmarks in order to validate the

practicality of TORCH.

These computing benchmarks will be run in the empirical study to collect the profile of

the benchmarks. The profile collection will be used in a classification model training

and runtime estimation equation construction. In order to avoid the redundant

characteristic among classes, we used only seven classes of dwarfs – dense, sparse,

spectral, nbody, sgrid, mapred, and grapht. The ugrid, bb, graphic, and fsm

applications involve graph traversals in the calculation, therefore; using only grapht

was sufficient in our framework. Moreover, the characteristics of clog and dprog can be

represented by nbody because they repeatedly perform the operations to complete the

task.

2.2.4 Optimization Algorithm

The runtime of the application is predicted by using the mathematical model that

represent the relationship between the application's attributes (the set of MICA and Perf

metrics) and the runtime. To build the mathematical model, we have employed the

optimization method. The input of the optimization algorithm is a set of application

attributes. The output is the runtime prediction equation.

Details on this section are the reviews of the optimization techniques. We mainly focus

on the heuristic-based algorithms because of the efficiency in massive application

scheduling. Heuristic-based scheduling algorithms can be categorized into two groups;

heuristic algorithm and meta-heuristic algorithms [21]. Although these two categories

apply a heuristic process in solution searching, their search methods are different. Both

types of the heuristic based algorithm apply the exploration concept for searching the

good-enough solution in an unexplored search space in order to avoid local optimum

solution. For meta-heuristic, an exploitation concept is integrated in the algorithm for

intensive finding a new solution. From the exploitation concept, meta-heuristic keeps

 11

improving for the best solution found in previous searches until the search boundary,

for example; iteration number is reached.

The heuristic [22], which is an experience-based solution searching method, does not

search for the best solution, rather for a good enough solution. Therefore, not all

possible solutions are to be considered. This kind of approach is suitable for the

problem with a massive search space. Adopting a similar method, the meta-heuristic

approach calibrates a candidate solution against a quality measurement, for example;

fitness value, to derive a good-enough solution from a solution space. Artificial Bee

Colony (ABC) [23] is the meta-heuristic scheduling algorithm that we chose because

the performance of ABC, based on several researches [24],[25],[26], outperformed the

other algorithms.

ABC mimics the food source searching behavior of bees. It consists of three phases;

employed bee, onlooker bee, and scout bee phases.

The sequence of ABC algorithm can be shown in Figure 2.1.

Artificial Bee Colony Algorithm

1 Randomly generate initial solutions

2 WHILE Termination criteria are not satisfied DO

3 Employed bees find better food sources in the adjacent area

4 Onlooker bees find better food sources around the existing sources

based on the employed bee waggle dance

5 Scout bees search for the new food sources

6 Keep the best so-far food sources

7 END WHILE

Figure 2.1 ABC Algorithm

The ABC algorithm initially generates a set of feasible solutions, which are the food

sources. In order to discover better food sources, three types of bees iteratively perform

different tasks for developing the food sources. The employed bees are responsible for

searching better food sources in the neighborhood. Then, the employed bees will

perform the waggle dance to present the goodness of the discovered food sources. The

onlooker bees will forage in the vicinity of existing food sources depending on the

dance of employed bees. Thus, the best food sources have more probabilities to be

visited by the onlooker bees. In contrast, the food sources that are arid will be dropped

and replaced by new sources that have been found by the scout bees. The best food

sources will be kept in each iteration until the stopping criterion is met.

The advantage of the ABC is it has the exploitation and exploration phases which

enable thorough searching over the solution space. The ABC algorithm using a

mathematical equation in solution adapting phase which is more efficient for continuous

problems. However, the rounding technique can be applied in order to transform the

solution to be discrete.

With this approach, appropriate mathematical models to predict the runtime of the

applications are constructed. The detailed method of how to build the model by using

ABC will be presented in the next chapter.

CHAPTER 3 RUNTIME ESTIMATION FRAMEWORK

As mentioned in the previous chapter, our proposed framework can be utilized to

estimate the runtime of workloads with an unknown profile in a cloud computing

environment. The unknown profile process can be called a 'black-box application'. The

overall sequence of our method is shown in Figure 3.1.

Figure 3.1 The Overall Methodology

As illustrated in Figure 3.1, there are three main steps in the proposed framework. Once

a black-box application is submitted to the system, a profile of the workload will be

collected. This step is called 'profile sampling'. In this step, the application will be run

for a certain period for sampling its profile, which is a set of MICA metrics and Perf

metrics.

Then, the workload's profile will be fed to a workload classification model in order to

categorize the workload into a class. The class contains the workloads that have similar

execution behaviors. As mentioned in the previous chapter, the classes of workloads are

defined based on the taxonomy of Berkley's Dwarfs. We used only 7 out of 13 classes

of dwarfs because some of them had repeating characteristics as others. Therefore, our

framework and experiments are presented based on the 7 dwarfs. The 7 classes of

dwarfs are shown in Table 3.1. Notice that the notations of dwarfs defined in Table 3.1

will be used throughout the report. The classification information will be used for

selecting an appropriate runtime prediction model for the workload.

Table 3.1 The Class of Dwarfs Used in This Framework

Dwarf's Name Notation

Dense linear algebra dense

Sparse linear algebra sparse

Spectral methods spectral

N-body methods nbody

Structured grids sgrid

MapReduce mapred

Graph traversal grapht

In the last step, the runtime of the workload will be predicted by using the mathematical

model selected from the previous step. The input attributes for the runtime estimation

model are both MICA metrics and Perf metrics. In addition to our framework, the

runtime can be used further in workload scheduling in case that a profile of the process

is unknown.

Estimated

Runtime

Runtime

Estimation

Workload

Classification

Profile

Sampling

Black-box

Workload

 13

The elaboration on each step in our methodology will be explained in three separate

subsections: profile collecting and sampling, workload classification model, and

runtime estimation model.

 Workload Profiles Collecting 3.1
The profile of the application, which comprises 12 attributes, is used as input for both a

workload classification model and a runtime estimation model. In the model

construction phase, the profiles of the several benchmarks are also used as a training

data. This section explains the workload profiling procedure.

In our work, we collected a total of 12 metrics from two workload characterization

tools: MICA and Perf (a Linux profiling tool). Eight microarchitecture-independent

metrics came from MICA, whereas the rests from Perf. However, the performance

metrics, from Perf, are dependent to hardware architecture. Unlike a user name and a

project name, these metrics can represent the actual execution characteristic of the

applications. The Table 3.2 shows the list of metrics used in our framework. Notice

that the notations of the metrics presented in Table 3.2 will be used throughout the rest

of the report.

Table 3.2 The List of Metrics

Tool Metric Notation

MICA

1. Probability of a register dependence

distance 16

reg_age_cnt_16

2. Branch predictability of per-address,

global history table (PAg) prediction-

by-partial-matching (PPM) predictor

PAg_mispred

3. Percentage of multiply instructions arith_cnt

4. Data stream working-set size at 32-byte

block level

data_stream

5. Probability of a local load stride = 0 mem_read_local_stride_8

6. Probability of a global load stride 8 mem_read_global_stride_8

7. Probability of a local store stride 8 mem_write_local_stride_8

8. Probability of a local store stride

4,096

mem_write_local_stride_4096

Perf

9. CPU clock cpu

10. Task clock task

11. Page faults fault

12. Context switches cs

In fact, the Perf tool can measure both hardware events (e.g., CPU cycles, instructions,

cache references) and software events (e.g., CPU clock, task clock, page faults).

However, we could collect only the software event metrics because the virtual machines

in the cloud do not allow users to access the hardware events. Therefore, only 4

software events were used.

 14

Figure 3.2 Benchmark Profiles Collecting Workflow

The sequence of benchmark profiles collecting is illustrated in Figure 3.2. We

performed this process to collect the training data for model construction. In order to

collect the profiles, the benchmarks were run on the master computer and the metrics

are captured by MICA and Perf. Once the set of metrics are obtained, it will be used in

the models construction phase. This step requires a large amount of data, which is a set

of workload profiles, to train the models. The workload classification model needs the

profile to build a decision tree for categorizing the workloads into classes. The runtime

estimation models apply the linear regression technique to fit the attributes of the

profiles to the mathematical models. More details on the models construction

procedures will be presented in this chapter.

As shown in Figure 3.2, only MICA metrics are used in workload classification model

training because the classification results should be independent to the hardware

architectures. Thus, MICA metrics, which are microarchitecture-independent metrics,

are employed. However, all the collected metrics will be used in runtime estimation

model training since the runtime of a workload must be specific to the machine.

Therefore, Perf metrics, which are dependent to machines, are used in collaboration

with MICA metrics in the runtime estimation models construction.

The master computer used for collecting the profile of the workloads runs the Ubuntu

12.04 operating system. The compilers for C and C++ are gcc-4.4 and g++-4.4,

respectively. Since MICA is the extension of a pin tool, we had to install the pin tool

version 2.11 on the computer. Notice that the later versions were not compatible with

MICA. We installed the latest version of MICA, version 0.40, on our machine. The Perf

tool that we installed was version 3.2.53.

The training data that we used in models construction step are the profiles of 20

benchmarks, from 3 benchmark suites. The classes of the benchmarks were known. The

period of profile collecting was equal to the execution time of each benchmark. We also

adjusted the input parameters in order to obtain the profiles of the workloads with

various input sizes and runtimes. The list of benchmarks is shown in Table 3.3.

Run the
benchmarks

on the master

computer

Collect 8 metrics

by MICA

Construct workload

classification model

Collect 4 metrics

by Perf

Construct runtime

estimation models

MICA metrics

+

MICA metrics

Perf metrics

 15

Table 3.3 The List of Benchmarks

Benchmark Benchmark Suite

kmeans

lud

nn

heartwall

hotspot

lavaMD

leukocyte

particle

Rodinia

lu (A,B,S)

ep (A,B,C,S)

sp (A)

cg (A,B,C,S)

NPB

dense

integerSort

quickSort

radixSort

monteCarlo

nbody2d

sparse

spectral

TORCH

In our work, the MICA and performance metrics (Perf metrics) were collected

separately because machine did not allow multiple tools to analyze the workload at the

same time. To collect the profile of the workload, the Linux shell scripts were used to

leash the profile gathering process.

For MICA metrics, we captured the data every one million instructions. Then, we

obtained the set of raw metrics in a file. The raw metrics were calculated using the

formulas given in a manual in order to retrieve the MICA metrics. At the final step, the

values in each MICA metric were averaged. Therefore, the MICA metrics that we used

throughout the project were the averaged values of a full-length run of the workload.

In order to measure the performance metrics, a simple 'perf' command was run. Unlike

MICA, the metrics-collecting interval cannot be defined. Thus, we executed the 'perf'

command every 2 seconds instead. The performance metrics were contained in a file.

As same as the MICA metrics, the mean of the values in each performance metric were

computed.

In the experiment, the method to sample the profile of the workload is the same as the

procedure that is presented in this section. However, the sampling period was shorter.

Details of profile sampling methods will be presented in the next chapter.

 Workload Classification Model 3.2
The classification model is used for categorizing an unknown-profile workload into a

class of dwarfs. The classification result is further utilized in the runtime prediction

step. As mentioned earlier, our proposed framework was based on the 7 Berkley's

dwarfs. We can map the benchmarks to the Berkeley's dwarfs as shown in Table 3.4.

 16

Table 3.4 Mapping Between Benchmarks and Dwarfs

Dwarf Kernel / Application

Rodinia NPB TORCH

dense kmeans

lud

nn

lu (A,B,C,S) dense

sparse - cg (A,B,C,S) sparse

spectral - - spectral

nbody - - nbody2d

sgrid heartwall

hotspot

lavaMD

leukocyte

particle

sp (A,B,C,S) -

mapred - ep (A,B,C,S) monteCarlo

grapht - - integerSort

quickSort

radixSort

To train the model, we collected 255 different workload profiles as a training set. Only

MICA metrics were used in this step because, as mentioned in the previous section, we

needed the hardware-independent classification results. The attributes of the model

were the MICA metrics, which are the floating number between 0 and 1. The labels

were the 7 classes of dwarfs: dense, sparse, spectral, nbody, sgrid, mapred, and grapht.

We plotted the Kiviat diagram for each dwarf, shown in Figure 3.3, in order to analyze

the similarity of the different applications in the same class of dwarfs. Each axis

represents the MICA metrics. The polygon in each diagram represents the plot of each

application in the specific class of dwarfs (see the list of applications in the same class

in Table 3.4). The values plotted in the graph are normalized in Z-scores, equation (3.1).

 ̅

 (3.1)

 where Z is Z-score

 X is the value to be normalized

 ̅ is the mean of all values

 sd is the standard deviation of all values

From Figure 3.3, the benchmarks in the same class have similar MICA metrics. This

can be seen from the shapes of the polygons in the same graph. Therefore, we could use

this data in model training because the applications in the same class could establish

similar program characteristics.

 17

a) dense b) sparse c) spectral

d) nbody e) sgrid f) mapred

g) grapht

Figure 3.3 Kiviat Diagrams of MICA Metrics

mean

mean - standard deviation

mean + standard deviation

reg_age_cnt_16

PAg_mispred

arith_cnt

data_stream

mem_write_local

_stride_4096

mem_write_local

_stride_8

mem_read_global

_stride_8

mem_read_local_

stride_0

 18

3.2.1 Workload Classification Model Construction

In order to select the classification method, we used Weka, which is a data mining

analysis tool, to run several classification methods, Bayesian Network, k-NN, Rule-

Based, and Decision Tree, to compare the classification results. It turned out that every

approach could give comparable good results. We then selected a C4.5 algorithm to

build a classification model, which is a decision tree, since a decision tree is simple, and

the result is easy to be interpreted. Moreover, C4.5 has been used widely in the real

applications [27],[28].

The results from the decision tree algorithm are a set of rules, derived from the decision

tree, for classifying the application into classes. The rules are represented in the

Boolean expressions, which ^ and ˅ denote and and or operations. The conditional

expressions use <, ≤, >, and ≥ to represent less than, less than or equal, greater than,

and greater than or equal operations, respectively. Moreover, we used the following

notation to represent the name of MICA metrics:

 A denotes reg_age_cnt_16

 B denotes PAg_mispred

 C denotes arith_cnt

 D denotes data_stream

 E denotes mem_write_local_stride_4096

 F denotes mem_write_local_stride_8

 G denotes mem_write_global_stride_8

 H denotes mem_read_loca_stride_8

Since there was a rule for every class, there were 7 rules in total. To use the rules to

classify the application, the MICA metrics must be known. The application would be

categorized into the class only if all the conditions in the rule of that class were valid.

The rules are as follows:

Rules for dense

(A ≤ 0.658527 ^ F ≤ 0.001908 ^ B ≤ 0.00019 ^ G ≤ 0.000094) ˅

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B > 0.00019 ^ H > 0.000014 ^ F ≤ 0.000027) ˅

(A ≤ 0.648527 ^ F > 0.001908) ˅

(A > 0.64852 ^ H > 0.000014 ^ B ≤ 0.004874 ^ E > 0.99348)

Rule for sparse

(A > 0.648527 ^ H ≤ 0.000014 ^ E ≤ 0.99072) ˅

(A > 0.648527 ^ H > 0.000014 ^ B ≤ 0.004874 ^ E ≤ 0.99348 ^ B > 0.001732) ˅

(A > 0.648527 ^ H > 0.000014 ^ B > 0.004874 ^ D ≤ 3833.065186 ^ F > 0.000011) ˅

(A > 0.648527 ^ H > 0.000014 ^ B > 0.004874 ^ D > 3833.065186)

Rule for spectral

(A > 0.648527 ^ H > 0.000014 ^ B ≤ 0.004874 ^ E ≤ 0.99348 ^ B ≤ 0.001732)

Rule for nbody

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B ≤ 0.000109 ^ E > 0.999893)

 19

Rule for sgrid

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B ≤ 0.00019 ^ G > 0.000094) ˅

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B > 0.00019 ^ H ≤ 0.000014) ˅

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B > 0.00019 ^ H > 0.000014 ^ F > 0.000027) ˅

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B > 0.000109 ^ B ≤ 0.006144 ^ E >

0.996586)

Rule for mapred

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B ≤ 0.000109 ^ E ≤ 0.999893) ˅

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B > 0.000109 ^ B ≤ 0.006144 ^ E ≤

0.996586) ˅

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B > 0.000109 ^ B > 0.006144)

Rule for grapht

(A > 0.648527 ^ H > 0.000014 ^ B > 0.004874 ^ D ≤ 3833.065186 ^ F ≤ 0.000011)

The stratified 10-fold cross-validation was applied to the model in order to measure the

quality of the decision tree. The stratified cross-validation ensures that the testing data

in each fold is sampled from all classes. Our decision tree yielded a high accuracy of

96.89 percent. The experiment on the classification model will be presented in Chapter

4.

 Runtime Estimation Model 3.3
Our work aimed to predict the runtime of the workloads on the cloud. Thus, three types

of Amazon EC2's on-demand instances were adopted. Based on the survey, we selected

the instances that were likely to be chosen for a high performance computing purpose.

The list of virtual machines used in this framework is shown in Table 3.5.

Because there were 7 dwarfs with different profiles, each instance type required 7

runtime estimation models. Each model could only estimate the runtime for a specific

dwarf on a specific machine. For this reason, a benchmark or a workload had to be

accurately classified into a dwarf on specific machine before predicting a runtime.

Therefore, there was 21 runtime prediction models in total.

The runtime prediction model is a mathematical equation that describes the relationship

between the metrics, an input size, and a runtime. The runtime is a dependent variable,

but the rest are not.

In the previous section, we described the procedure to obtain a set of metrics from

MICA and Perf. However, there is another important input to the prediction model,

which is an input size of the workload. The input size has to be well defined since it can

affect to a precision of a prediction. We then defined the way to normalize the input size

for each dwarf.

 20

Table 3.5 Instances of Amazon Web Service that Used in the Framework

Name Type Capacity

m1.large General purpose 4 ECUs
1

2 vCPUs
2

7.5 GB Memory

2 x 420 GB Storage

Moderate network performance

c1.xlarge Compute optimized 20 ECUs
1

8 vCPUs
2

7 GB Memory

4 x 420 GB Storage

High network performance

m2.2xlarge Memory optimized 13 ECUs
1

4 vCPUs
2

34.2 GB Memory

1 x 850 GB Storage

Moderate network performance
1ECU is a computing unit of Amazon EC2, which is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processer
2vCPU is a number of virtual CPU

In the following subsections, the normalization of the input sizes is presented in the first

section, and the detailed explanation on the steps to derive a mathematical equation for

each dwarf is given in the last section.

3.3.1 Input Size Generalization

In addition to the 12 metrics, the input size of the workload is also required in the

runtime prediction step. Basically, the different applications may have different ways to

define the input size, even for the applications in the same class of dwarfs. We defined

the method to normalize the input size for each type of dwarf. The details are provided

below.

dense: a data of dense is usually represented in a matrix/vector. The algorithm generally

iterates over the matrix/vector in order to access, read or write, the elements. Thus, a

dimension of the matrix/vector importantly affects the runtime of the dense application.

We defined the input size of dense as follows:

 (input size)dense = n × m (3.2)

 where n is the number of rows of a matrix/vector

 m is the number of columns of a matrix/vector

sparse: a data of sparse is similar to dense. However, it contains a large number of zero

elements. Therefore, the data is stored in a special matrix/vector, which memorizes only

the non-zero elements, in order to optimize the memory space. We then defined the

input of sparse as follows:

 (input size)sparse = nnz (3.3)

 where nnz is the number of non-zero elements

 21

spectral: the spectral methods transforms the data from a spatial domain to a frequency

domain. The following equation can be used for normalizing an input size of the two

dimensional data.

 (input size)spectral = n (3.4)

 where n is the number of data to be transformed

nbody: the nbody applications calculate the interactions between the data points. The

data points are computed through the defined time steps. Thus, the input size is directly

respected to the number of particles and the time steps. The input size normalization for

nbody is shown as follows:

 (input size)nbody = n × (time steps) (3.5)

 where n is the number of particles/bodies

 time steps is the number of time steps to be simulated

sgrid: for sgrid, data is stored in a grid and updated in every time step by exploiting the

values of its neighborhood. The input size equation is as follows:

 (input size)sgrid = n × m × (time steps) (3.6)

 where n is the number of rows

 m is the number of columns

 time steps is the number of time steps to be computed

mapred: the mapred applications usually involve a large amount of data. The input size

then depends on the number of data as shown below:

 (input size)mapred = n (3.7)

 where n is the number of data item

grapht: for grapht, the number of nodes in a graph strongly affects a value of input size.

Thus, the input size can be computed as follows:

 (input size)grapht = n (3.8)

 where n is the number of nodes in a graph

Notice that this step requires an expert to determine the input size of the workload. The

input size for each dwarf is a simple product of the input parameters. However, the

calculation of the input size does not need to be complex because, in the next step, it

will be composed in the runtime prediction model.

 22

3.3.2 Runtime Estimation Model Construction

From the previous steps, the 12 metrics (from MICA and Perf) and the input size were

obtained. In order to construct the runtime estimation model for each dwarf, the

relationship between the inputs and a runtime has to be defined. Therefore, we collected

a training data, which contained various input parameters and runtimes. Each data

record consisted of the 12 metrics, an input size, and a runtime of the workload. Due to

some availability of the benchmark functions, we could not collect the data for the

dwarfs evenly. The minimum and maximum number of data records were 34 and 50,

respectively.

In order to determine such relationship, we adopted the Artificial Bee Colony algorithm,

also known as ABC. The ABC algorithm mimics a foraging behavior of bees. In our

context, the solutions were the food sources of bees. The goal of ABC is to find the

mathematical model that can best describe the relationship between the inputs and a

runtime, in linear time. The brief steps of ABC are shown in Figure 3.4.

Figure 3.4 ABC Steps

From Figure 3.4, ABC starts by finding the possible structure of the equation. For

example: runtime = β1x1 + β2x2 + ... + β0; where βi and xi are coefficients and

independent variables. The coefficients of the equation are not known in the first place,

therefore; ABC computes the coefficients by using linear regression in the next step.

Before applying linear regression to the training data, we ensured that the data were

normally distributed by plotting probability graphs of the runtimes. The graphs

indicated that the runtimes of all data sets were normally distributed. Under normality

assumption, linear regression can be efficiently used to fit data to the model. To

evaluate an accuracy of the model, the R-squared is then calculated. The more R-

squared is closer to 1 (100%), the higher the accuracy of the prediction model. The R-

squared can be computed by using equation (3.9).

 R-squared = 1 -
∑

∑ ̅
 (3.9)

 where yi is an actual value

 fi is a predicted value

 ̅ is a mean of the actual values

Solution adjustment phase

(Perform by bees)

A set of metrics,
input size and

runtime

Find the

structure of an
equation

Compute

coefficients

Compute R-

squared

Runtime

prediction

model

 23

After that, the structure of the equation is iteratively developed. Once ABC stops, the

runtime prediction model is derived.

The objective of ABC is to minimize the R-squared value of the equation. Thus, the

objective function and fitness value of the ABC algorithm are shown in equation (3.10).

 Maximize fitness = R-squared(solutioni) ; 1 < i < n (3.10)

 where n is a total number of bees

In this work, interactions between applications’ attributes were not considered because

examining variables interactions would significantly increase a size of the search space,

and a good enough solution might not be obtained in the linear time. For ABC, the

solution is encoded in 3 main arrays: Term, Function, and Operation. Details for each

array are presented in Table 3.6.

Table 3.6 Arrays for ABC

Array Description Possible Values Length

Max Min

Term (T) It stores the

selected input

parameters of the

workload.

cpu_clock (A)

task_clock (B)

page_fault (C)

context_switch (D)

arith_cnt (E)

PAg_mispred (F)

reg_age_cnt_16 (G)

data_stream (H)

mem_read_local_stride_8 (I)

mem_read_global_stride_8 (J)

mem_write_local_stride_8 (K)

mem_write_local_stride_4096 (L)

input_size (M)

11 2

Function

(F)

It stores the

selected

functions for the

input parameters

(p).

p

log(p)

ln(p)

power(p,m)

sqrt(p)

= p

= log10(p)

= ln(p)

= p
m
 , 2 ≤ m ≤ 4

= √

11 2

Operation

(O)

It stores the

mathematical

operations.

add (+)

subtract (-)

10 1

The structure of the solution is shown in Figure 3.5.

 24

Figure 3.5 Structure of ABC's Solution

One solution must consist of at least two terms, two functions, and one operation.

Moreover, we limited a number of terms to not exceed 11 in order to control a number

of feasible solutions. For this problem, a size of search space became 13
11

 × 5
11

 × 2
10

,

about 6.9 × 10
21

.

There were 3 types of bees responsible for finding the best food source; employed bee,

onlooker bee, and scout bee. At the beginning of the algorithm, each employed bee

randomly created the solution. Thus, the number of initial solutions was equal to the

number of employed bee in the colony. Then, the solutions were iteratively developed

until the termination criterion was satisfied. In this project, the algorithm would stop

when a number of calculation-iterations reached a defined threshold.

1. Employed bee phase

 For each loop, each employed bee improved its solution. A new solution was

developed by randomly selecting the positions in the arrays to adjust. For each

selected position, a probabilistic value, a new random value, and a neighbor's

value were used in order to compute the new value. The formulas are shown in

equation (3.11) to equation (3.14).

 indexA = Random(Integer < lengthA) (3.11)

 oldValue = A [indexA] (3.12)

 newVal = Random(Integer possibleA) (3.13)

 A[indexA] = oldVal + Random(-1,1) × (oldVal - newVal) (3.14)

where indexA is a selected index of the array A to adjust

 lengthA is the number of items in the array A

 possibleA is a set of possible values in the array A

 oldVal is an old value in the array A at IndexA

 newVal is a new value that is randomly selected

2. Onlooker bee phase

In each round, an onlooker bee selected a solution from an employed bee by

using probabilistic selection shown in equation (3.15).

∑

 ; 1 < i < n (3.15)

 where n is the total number of bees

 Then, it adjusted the solution by using the same method as employed bees.

... Term

(T)

Function (F)

Operation (O)

 25

3. Scout bee phase

After the selected solution was adjusted in the earlier phases, the fitness value of

adjusted solution was then calculated and compared to the fitness value of the

original solution. If the adjusted solution got better, it would replace the original

one. On the other hand, if it was poorer, the original solution would not be

replaced, however, the un-improvement counter of this solution would be

increased by one.

 In this phase, if the value of un-improvement counter reached the threshold, this

solution would be dropped and it would be replaced by a new solution, which

was randomly created.

Due to a large search space, we adopted the parallel computing in order to improve the

running performance of ABC. The algorithm was run on the 12-core computers with 32

GB-memory. The number of bees in a colony was 3600 in total (1200 for each type of

bees). The un-improvement and termination thresholds were set to 10 and 10000,

respectively. When the number of iterations reaches the termination threshold, the

algorithm will stop and the best-so-far runtime prediction equation will be obtained. In

other words, the algorithm runs until the solution no longer improve for 10 iterations or

when the iteration of 10,000 is reached.

Because ABC applies a heuristic method to search for a good enough solution in limited

time, the best solutions from ABC may not be the same every time even for the same

training data. In our work, we ran ABC 5 times on each data set and selected the

runtime equation with the highest R-squared.

The runtime prediction models and R-squared values for each dwarf are presented

below. There were three equations for each dwarf class for predicting the runtime of the

application on the different machines in Amazon EC2. The obtained runtime is in

second. The machines were General purpose, Compute optimized, and Memory

optimized instance (see Table 3.5 for more details). The notations used in the equations

are shown in Table 3.6 (the Possible Values column).

dense

 General purpose machine

 R-squared: 99.6%

runtime = 1.97 × 10
8
 + 0.508 sqrt(M) + 96277331 G - 3020 ln(F)

+ 20268 E + 2923 ln(J) - 434 sqrt(L) + 1.13 L + 9457 ln(L)

 + 136290 sqrt(F) - 2.93E+08 sqrt(G) + 55353417 ln(G) (3.15)

 Compute optimized machine

 R-squared: 99.4%

runtime = - 42746086 + 2500 ln(J) + 0.198 L + 0.435 sqrt(M)

+ 9974 sqrt(H) - 25.7 sqrt(L) - 86 ln(D) - 12876458 ln(G)

 - 64697 sqrt(J) - 17687534 G+ 2.21 sqrt(C) + 60421185 sqrt(G) (3.16)

 26

 Memory optimized machine

 R-squared: 99.4%

runtime = 1.30 × 10
8
 + 0.312 sqrt(M) + 62857250 G - 1365 ln(F) +

10739 E + 1604 ln(J) - 191 sqrt(L) + 0.450 L + 4805 ln(L)

 + 70132 sqrt(F) - 1.92 × 10
8
 sqrt(G) + 36668888 ln(G) (3.17)

sparse

 General purpose machine

 R-squared: 99.8%

runtime = - 27 - 17918 power(E,3) + 165 ln(M) - 14458 log(E)

- 119 ln(D) + 29.9 ln(J) + 188741 F + 28.2 sqrt(D)

 + 19914 sqrt(H) - 7706 ln(J) - 3692 power(G,3) - 220419 H (3.18)

 Compute optimized machine

 R-squared: 99.8%

runtime = - 73.0 - 268 ln(M) - 45881 sqrt(I) - 161025 G

+ 3.35 sqrt(M) + 244232 K + 3107 F + 2.56 ln(H) - 87542 power(K,3)

 + 118456 ln(G) - 312 log(F) - 272 power(E,3) (3.19)

 Memory optimized machine

 R-squared: 99.8%

runtime = 18.6 + 2.93 sqrt(M) - 94.1 ln(M) + 42939 sqrt(I)

- 11629 H - 44.8 ln(L) + 100 ln(A) - 207 B + 206 A

 + 0.271 log(J) + 528 sqrt(K) + 9.81 log(I) (3.19)

spectral

 General purpose machine

 R-squared: 95.9%

runtime = 1824 + 0.0389 sqrt(M) + 1 sqrt(A) - 574 log(L)

- 74 ln(A) + 0.0288 L - 0.02 A - 3288 ln(G) - 42.0 ln(D)

 - 14 log(H) - 78252160 I - 10.7 ln(M) (3.20)

 Compute optimized machine

 R-squared: 96.6%

runtime = 6793 + 0.0251 sqrt(M) + 53 sqrt(A) + 25755716 I

- 355 ln(L) - 9.21 ln(M) + 2381152 ln(B) - 2677 G

 - 2381678 ln(A) - 0.31 A + 7.28 sqrt(L) + 21.8 log(D) (3.21)

 27

 Memory optimized machine

 R-squared: 85.4%

runtime = - 14439 + 1.05E+08 I - 53690 ln(G) + 20.6 ln(D)

+ 3.95 ln(M) + 10.1 sqrt(A) + 60236 K + 67571 G

 - 112010 sqrt(K) + 0.000044 C - 14.1 ln(L) - 17.9 ln(C) (3.22)

nbody

 General purpose machine

 R-squared: 96.6%

runtime = - 46 + 0.000090 M + 0.000000 power(C,2)

- 2.4 power(A,2) - 0.0144 C + 2.4 power(B,2) + 0.0564 power(D,2)

 - 0.000002 power(L,2) + 0.138 sqrt(M) + 0.115 L (3.23)

 Compute optimized machine

 R-squared: 94.3%

runtime = - 54 + 0.000085 M + 0.00172 power(A,3) + 0.00601 C

 - 0.307 A + 0.0757 L - 0.00172 power(B,3) + 0.000282 power(D,3) (3.24)

 Memory optimized machine

 R-squared: 82.6%

runtime = - 8279 + 1.71 sqrt(M) + 16812 E - 1736 ln(M)

+ 3086400 ln(K) + 7.84 sqrt(C) - 7403 ln(F) - 738107 sqrt(H)

 - 70443 sqrt(G) - 0.809 L + 1331254 sqrt(F) + 318 ln(L) (3.25)

sgrid

 General purpose machine

 R-squared: 97.8%

runtime = 30774 + 139 sqrt(M) + 1057953 ln(A) + 11395232 B

- 245502 ln(E) - 6030218 sqrt(K) + 104301 ln(L) - 11396367 A

 + 16.9 L - 35676 sqrt(D) - 7951 sqrt(L) - 4755113 sqrt(I) (3.26)

 Compute optimized machine

 R-squared: 99.1%

runtime = 158662 + 29.5 sqrt(M) - 262379 ln(A) + 120580 sqrt(A)

+ 4735 ln(M) - 1725995 sqrt(J) + 53564046 I - 25.8 sqrt(C)

 - 418 ln(H) + 234221 F - 60054 ln(D) - 1651 B (3.27)

 28

 Memory optimized machine

 R-squared: 97.6%

runtime = - 354821 + 38.0 sqrt(M) - 3035229 A - 740690 K

- 8732 sqrt(D) - 436570 sqrt(J) + 189079 ln(A) + 3035031 B

 - 64082 ln(E) + 4.05 L - 1913 sqrt(L) + 56561 log(L) (3.28)

mapred

 General purpose machine

 R-squared: 99.7%

runtime = 306958 + 0.219 M - 230720 K - 15491 ln(D) + 67.7 sqrt(L)

 - 36 sqrt(C) - 3244 ln(L) - 740 log(C) + 3.30 C - 1078 log(M) + 15.4 B (3.29)

 Compute optimized machine

 R-squared: 99.1%

runtime = - 580 - 207 sqrt(M) + 0.00316 power(A,2) + 7.63 C

+ 1761 ln(M) - 108 D - 197 sqrt(C) + 1.11 M - 0.000802 power(C,2)

 + 702 log(L) + 204 log(F) + 19.5 ln(J) (3.30)

 Memory optimized machine

 R-squared: 99.8%

runtime = 338 - 23.1 sqrt(M) + 0.0253 C + 0.174 M - 0.0444 L

+ 20.1 sqrt(L) + 0.175 A - 1746 log(G) + 93.0 ln(M) - 542 log(L)

 - 37.4 log(I) + 35.1 log(J) (3.31)

grapht

 General purpose machine

 R-squared: 92.4%

runtime = 1395 - 0.000075 C + 0.203 sqrt(C) + 211 sqrt(F) - 84.1 sqrt(B)

 + 1.07 B + 41 G - 89 log(H) - 0.85 sqrt(L) + 0.00000043 M (3.32)

 Compute optimized machine

 R-squared: 91.6%

runtime = 993 + 0.000000 M - 0.32 sqrt(A) - 747 F - 456 K

 + 0.155 sqrt(C) - 24 log(F) - 3251 H - 681 sqrt(E) - 0.000050 C (3.33)

 Memory optimized machine

 R-squared: 94.8%

runtime = 11010 - 0.00675 sqrt(M) + 12744 log(K)

- 1033333 I - 0.0020 L - 11029 sqrt(K) + 0.96 ln(M)

 - 0.000004 C + 0.130 sqrt(C) + 0.00000038 M + 99 sqrt(F) (3.34)

 29

Figure 3.6 Percentage of R-squared Values of Dwarfs on Virtual Machines

The runtime estimation equations that obtained from ABC have high R-squared values

as shown in Figure 3.6. R-squared values of almost all equations are higher than 90%.

The runtime estimation equations obtained from ABC have high R-squared values as

shown in Figure 3.6. R-squared values of almost all equations are higher than 90%. This

implies that ABC could efficiently find the model that could describe the relationship

between the inputs and a runtime of the workload in linear time.

In addition to methods mentioned in this section, the obtained runtime equations from

ABC can be further improved by determining the correlations between variables and

runtimes. Since ABC is a heuristic approach, some attributes might not be significantly

correlated to the runtimes. Thus, removing the irrelevant attributes may improve the

qualities of the models, and it would ensure that all attributes in the equations were

significantly correlated to the runtimes. The simplest way to remove the uncorrelated

attributes from the model is to try removing the attributes one by one and then

recalculate R-squared. If new R-squared is better than the old one, the removed attribute

might be insignificant to the model. Another approach is to calculate correlation

measures between attributes and runtimes, and remove the attributes that are deemed as

unimportant.

Furthermore, if new data records were added to the data set, ABC could compute a new

model by adopting an original equation as the best so far solution and a seed solution.

This method can significantly improve the performance of ABC since it does not have

to start from the scratch. The experiments on the runtime prediction equations will be

provided in chapter 4.

Although all runtime estimation models can achieve very high R-squared values, there

is a limitation in our models. Our models might not be efficient to predict runtimes of

applications that fit behaviors of multiple dwarfs because the applications that are used

to train the models are single-patterned applications. To solve this problem, dwarf

classes with mixed behaviors have to be added. For instance, workload classes should

include the classes that represent the combinations of existing dwarf classes (for

example, dense & sparse class, dense & grapht class, and so on).

In this section, we have presented the methodology to estimate the runtimes of the

applications. Our framework is divided into 3 parts: profile colleting, workload

9
9
.6

9
9
.8

9
5
.9

9
6
.6

9
7
.8

9
9
.7

9
2
.4

9
9
.4

9
9
.8

9
6
.6

9
4
.3

9
9
.1

9
9
.1

9
1
.6

9
9

.4

9
9

.8

8
5
.4

8
2
.6

 9
7
.6

9
9
.8

9
4
.8

0

20

40

60

80

100

120

dense sparse spectral nbody sgrid mapred grapht

R
-s

q
u

a
r
e
d

 (
%

)

General

Compute

Memory

 30

classification, and runtime prediction. The profile collecting used MICA and Perf to

record the profile of the process. The profile, which is a set of attributes that represent

the characteristic of the application, is an input of the classification and prediction

models. After the profile collecting process was done, the profile was entered into the

workload classification model to identify the class of the application. The partition of

classes was based on the Berkley's Dwarfs classification. Once the class was known, the

runtime prediction model for the application on the specific computer could be selected.

The profile of the application was also used as the input of the runtime estimation

model. The outcome from the model is a predicted runtime of the application.

CHAPTER 4 EXPERIMENTS AND RESULTS

This section gives the details on the experiments and results of our proposed

framework. The experiments were divided into two parts. The difference between the

two experiments was the benchmarks used in testing. One experiment adopted trained

benchmarks, while the other used untrained benchmarks.

The experimental procedure for the two experiments followed the methodology that

was presented in chapter 3. At the beginning, the profile of a benchmark was sampled

by running it on the master computer for a short period (see the details of the master

computer in section 3.1). The profile was collected by MICA and Perf tool. Profile

collecting took only a minute because it was the lowest runtime in the training data. In

the next step, the runtime prediction model was selected. To choose an appropriate

runtime equation, the benchmark was classified into a dwarf class. At the final step, the

runtime of the workload was estimated.

The predicted runtimes of the applications were compared to the actual runtimes on the

virtual machines of Amazon EC2. The virtual machines that we used in the experiment

were the General purpose, Compute optimized, and Memory optimized instances (see

Table 3.5 for more details). Although both experiments had the same testing steps, the

presented results and the discussions were different.

In the following sections, we will henceforth call a sample of a profile of the benchmark

as a 'sample data' or a 'sample profile'. The sample data was a set of MICA and Perf

metrics that were collected in 1 minute-interval. The full-length run profile will be

called a 'full-run data' or a 'full-run profile'. It is a profile that was collected from the

beginning until the end of the execution.

 Experiment on Trained Benchmarks 4.1
The purpose of this experiment was to verify that the sample data could be used instead

of the full-run data. In the models construction phase, we trained the models by using

the full-run data. However, we used the sample profile in the experiments. Therefore,

we needed to ensure that the sample data would give the accurate runtime prediction

results as the full-run data.

In the experiment, two types of benchmarks, type A and type B, were selected from

each dwarf. The two benchmarks were the same application, but had different input

sizes. Type A and type B represented a small input size and a large input size,

respectively. Table 4.1 shows the actual runtimes of the selected benchmarks. In the

discussion, the actual runtimes will be compared to the predicted runtimes.

Table 4.1 Actual Runtimes of Trained Benchmarks

Dwarf:

Benchmark
Type

Actual Runtime (second)

General

Purpose

Compute

Optimized

Memory

Optimized

dense:

nn

A 3081 2492 1822

B 15841 7572 5822

sparse:

cg

A 233 159 140

B 694 438 388

 32

Dwarf:

Benchmark
Type

Actual Runtime (second)

General

Purpose

Compute

Optimized

Memory

Optimized

spectral:

spectral

A 111 74 73

B 286 186 177

nbody:

nbody2d

A 894 785 592

B 11291 9348 7020

sgrid:

particle

A 2168 580 883

B 96305 14174 26326

mapred:

monteCarlo

A 3067 2022 1193

B 12133 12457 2292

grapht:

quickSort

A 370 245 219

B 708 507 432

Before using the sample profiles for predicting the runtime of the benchmarks, we

plotted the Kiviat diagrams to determine the similarity between the sample and the full-

run data. The values plotted in the graphs are normalized as the Z-scores, equation (3.1).

For each graph, the red polygon and the blue polygon represent the plot of a sample

profile and a full-run profile, respectively. The diagrams are shown in Figure 4.1.

a) nn A

b) nn B

c) cg A

d) cg B

e) spectral A

f) spectral B

Figure 4.1 Kiviat Diagrams of Sample and Full-length Run Data

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

 33

g) nbody2d A

h) nbody2d B

i) particle A

j) particle B

k) monteCarlo A

l) monteCarlo B

m) quickSort A

n) quickSort B

A: cpu_clock

B: task_clock

C: page_fault
D: context_switch

E: arith_cnt

F: PAg_mispred

G: reg_age_cnt_16

H: data_stream

I: mem_read_local_stride_8

J: mem_read_global_stride_8

K: mem_write_local_stride_8

L: mem_write_local_stride_4096

M: input_size

Figure 4.1 Kiviat Diagrams of Sample and Full-run Data

For each diagram in Figure 4.1, the red line (which represents a sample data) almost

conceals the blue line (which represents a full-run data). This is apparent that the

sample data and the full-run data were approximately the same. Therefore, the sample

data can be used to represent the full-run data. Furthermore, we believe that this

conclusion can be applied to other benchmarks as well.

The discussion of the experiment is divided into two parts: the workload classification

and the runtime prediction.

4.1.1 Discussion on Workload Classification

The sample data was entered to the workload classification model. The correctness of

the classification is shown in Table 4.2.

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4
-2
0
2
4

A
B

C

D

E

F
GH

I

J

K

L

M

-4

-2

0

2

4
A

B

C

D

E

F
GH

I

J

K

L

M

-4

-2

0

2

4
A

B

C

D

E

F
GH

I

J

K

L

M

 34

Table 4.2 Classification Results of Trained Benchmarks

Benchmark Dwarf Classified As

nn A dense

dense

nn B dense

cg A sparse

sgrid

cg B sparse

spectral A spectral spectral

spectral B spectral

nbody2d A nbody

nbody

nbody2d B nbody

particle A sgrid

sgrid

particle B sgrid

monteCarlo A mapred

mapred

monteCarlo B mapred

quickSort A grapht

grapht

quickSort B grapht

All benchmarks, except cg A, were correctly classified into classes. We also

investigated the error in cg A classification. As shown in Table 4.2, cg A was

categorized into sgrid. We noticed that the sample data of cg A contained one metric

that was irregular. The value of the mem_write_local_stride_4096 metric was higher

than the mean value, which could cause an error in classification. However, in the next

step, we used both sparse and sgrid runtime prediction models for cg A.

4.1.2 Discussion on Runtime Prediction

The sample data was also used in runtime prediction. The model for each workload was

selected based on the classification results in the previous step. However, a runtime of

the cg A application was predicted by two models: sparse and sgrid. The prediction

results are presented in Table 4.3. Moreover, the comparisons between the prediction

results and the actual runtime for general purpose, compute optimized, and memory

optimized virtual machines are visualized in Figure 4.2, Figure 4.4, and Figure 4.4,

respectively.

Table 4.3 Runtime Prediction Results for Trained Benchmark

Benchmark

General

Purpose

Compute

Optimized

Memory

Optimized

Predicted

Runtime

(s)

Error

(%)

Predicted

Runtime

(s)

Error

(%)

Predicted

Runtime

(s)

Error

(%)

nn A 3501.94 13.67 3168.96 27.17 2131.8 17

nn B 15559.81 1.76 7068.03 6.66 5801 0.36

cg A

sparse model

253.31 8.71 208.30 31 145.23 3.73

cg A

sgrid model

5270.46 > 100 27971.21 > 100 5317.04 > 100

cg B 758.16 9.4 495.68 13.17 384.03 0.77

spectral A 101.8 8.29 98.92 33.67 85.18 16.69

spectral B 278.73 2.54 196.87 5.84 203.66 15.06

 35

Benchmark

General

Purpose

Compute

Optimized

Memory

Optimized

Predicted

Runtime

(s)

Error

(%)

Predicted

Runtime

(s)

Error

(%)

Predicted

Runtime

(s)

Error

(%)

nbody2d A 1062.31 18.83 839.31 6.91 800.23 35.17

nbody2d B 12557.56 11.22 9528.01 1.92 8293.39 18.14

particle A 2477.22 14.26 701.06 20.87 801.73 9.20

particle B 76925.63 20.12 16133.74 13.82 18765.20 28.72

monteCarlo A 3333.45 8.69 2517.61 24.51 1173.10 1.67

monteCarlo B 9420.92 22.35 8729.66 29.92 2210.49 3.56

quickSort A 444.88 20.24 296.08 20.85 296.76 35.51

quickSort B 500.41 29.32 349.24 31.12 366.34 15.19

Figure 4.2 Runtimes of Trained Benchmarks in Percent for General Purpose Machine

113.66

98.22

108.72

109.24

91.71

97.46

118.83

111.22

114.26

79.88

108.69

77.65

120.24

70.68

0 20 40 60 80 100 120 140

nn A

nn B

cg A

cg B

spectral A

spectral B

nbody2d A

nbody2d B

particle A

particle B

monteCarlo A

monteCarlo B

quickSort A

quickSort B

Runtime in Percent

Predicted

Actual

 36

Figure 4.3 Runtimes of Trained Benchmarks in Percent for Compute Optimized

Machine

Figure 4.4 Runtimes of Trained Benchmarks in Percent for Memory Optimized

Machine

127.17

93.34

131.01

113.17

133.68

105.84

106.92

101.93

120.87

113.83

124.51

70.08

120.85

68.88

0 20 40 60 80 100 120 140 160

nn A

nn B

cg A

cg B

spectral A

spectral B

nbody2d A

nbody2d B

particle A

particle B

monteCarlo A

monteCarlo B

quickSort A

quickSort B

Runtime in Percent

Predicted

Actual

117.00

99.64

103.74

98.98

116.68

115.06

135.17

118.14

90.80

71.28

98.33

96.44

135.51

84.80

0 20 40 60 80 100 120 140 160

nn A

nn B

cg A

cg B

spectral A

spectral B

nbody2d A

nbody2d B

particle A

particle B

monteCarlo A

monteCarlo B

quickSort A

quickSort B

Runtime in Percent

Predicted

Actual

 37

From the experimental results, the maximum and minimum errors for the runtime

prediction were 0.36% and 35.51%, respectively. The overall results were acceptable,

however; we examined the causes of the errors that higher than 30%. There were three

benchmarks that obtained high runtime prediction error: spectral A, nbody2d A, and

quickSort A.

From the investigation, the runtime prediction models for the three benchmarks could

yield the highly satisfactory estimation results for the benchmarks with a longer running

period. In the model-training step, the number of data records that contained long-

runtime was significantly more than those with short-runtime because our framework

was proposed for the HPC applications, which generally have a long execution time.

Therefore, the models might be more appropriate for predicting the runtime of the HPC

applications with high execution time.

Moreover, for the runtimes of cg A that was predicted by the sgrid model were

completely incorrect. This might imply that our framework was sensitive to the outliner.

In order to improve the strength of classification and runtime prediction models, more

data are needed in the training step.

 Experiment on Untrained Benchmarks 4.2
This experiment aimed to verify the practicality of our framework. We would verify

that our framework could be used to accurately predict the runtime of untrained

applications. Five distinct untrained applications, from three benchmark suites, were

adopted in the experiment. The benchmark suites were BioInfoMark [29], Galois [30],

and LAPACK [31]. These benchmarks have been frequently used in the experiments of

many researches [13][32][33].

BioInfoMark is a benchmark suite that contains bioinformatics applications. It has been

developed by the IDEAL lab at the University of Florida. In our experiment, only three

applications, which are clustalw, glimmer, and predator, were employed.

Galois is a framework for executing the serial C++ application on the shared memory

machines. It is a work of the University of Texus at Austin. We adopted one of the

applications in the Galois suite in our experiment, which is nbody.

LAPACK is a short name of Linear Algebra PACKage. It is a well-known library

written in Fortran 90 for solving linear algebra system. It is provided by the University

of Tennessee; the University of California, Berkeley; the University of Colorado

Denver; and NAG Ltd. We implemented one dense linear algebra application from the

LAPACK library. It performs lower-upper matrix factorization. We will call this

application 'lu'.

Notice that the selected benchmarks are representative of popular scientific

applications.

In order to utilize the benchmarks in our experiment, we complied each benchmark by

using gcc-4.4 on Ubuntu 12.04. The sample profiles of the benchmarks were collected

on the master computer (see Table 3.5 for more details). The actual runtimes were

measured by running the benchmarks on 3 types of virtual machines on the cloud:

General purpose, Compute optimized, and Memory optimized. For each actual runtime,

 38

we calculated it from the average runtime of three replicated runs. The summarized

details of the benchmarks and the actual runtimes are shown in Table 4.4.

Table 4.4 Actual Runtimes of Untrained Benchmarks

Benchmark Suite Actual Runtime (second)

General

Purpose

Compute

Optimized

Memory

Optimized

clustalw BioInfoMark 200 152 121

glimmer 211 158 127

predator 269 202 161

nbody Galois 3132 2225 1734

lu LAPACK 23357 16647 10959

Similar to the previous experiment, the sample profiles (MICA and Perf metrics) of the

benchmarks were used in workload classification and runtime prediction. The

classification and runtime prediction results are shown in Table 4.5. The bar graphs that

compare the predicted runtimes against the actual runtimes are shown in Figure 4.5,

Figure 4.6, and Figure 4.7.

Table 4.5 Runtime Prediction Results for Untrained Benchmarks

Benchmark:

Class

General Purpose Compute Optimized Memory Optimized

Predicted

Runtime

(s)

Error

(%)

Predicted

Runtime

(s)

Error

(%)

Predicted

Runtime

(s)

Error

(%)

clustalw:

dense

231.49 15.74 201.54 32.59 177 46.26

glimmer:

dense

286.61 35.83 224.89 42.33 114.07 10.18

predator:

sparse

217.87 19.01 126 37.49 142.63 11.41

nbody:

nbody

2764.49 11.73 1610.69 27.61 1509.01 12.98

lu:

dense

23362.96 0.02 18183.42 9.23 11700.13 6.47

Figure 4.5 Runtimes of Untrained Benchmarks in Percent for General Purpose Machine

115.75

135.83

80.99
88.27

100.03

0

20

40

60

80

100

120

140

160

clustalw glimmer predator nbody lu

R
u

n
ti

m
e
 i

n
 P

e
r
c
e
n

t

Actual

Predicted

 39

Figure 4.6 Runtimes of Untrained Benchmarks in Percent for Compute Optimized

Machine

Figure 4.7 Runtimes of Untrained Benchmarks in Percent for Memory Optimized

Machine

From Table 4.5, all the errors of runtime prediction for the benchmarks in the Galois

and LAPACK suites were lower than 30%. Moreover, almost all predicted runtimes for

nbody and lu were highly accurate with the highest error of 13%. Evidence to support

the experimental results was the similar applications, which were nbody2d, lu (A, B, C,

S), and lud, that were used to train the models in the models construction phase.

For the remaining benchmarks in the BioInfoMark suite, the prediction results were not

as good as expected. Most of the errors were higher than 30%. After inspecting the

flaws in our models, we found that there were not sufficient similar benchmarks trained

in our framework. One of the runtime prediction approaches [34] obtained the runtime

estimation errors between 35% and 70%. They observed that the poor estimation results

were caused by the insufficiency of the similar jobs in the historical data. In addition, as

discussed in the previous experiment, the model might be more suitable for estimating

the runtimes of workloads that have longer execution times.

Our average runtimes for General purpose, Compute optimized and Memory optimized

virtual machines were 16.46%, 29.85%, and 17.46%, respectively. From a similar piece

of research [7], they reported that the average runtime estimation errors of their

132.59
142.34

62.38
72.39

109.23

0

20

40

60

80

100

120

140

160

clustalw glimmer predator nbody lu

R
u

n
ti

m
e
 i

n
 P

e
r
c
e
n

t

Actual

Predicted

146.28

89.82 88.59 87.02

106.76

0

20

40

60

80

100

120

140

160

clustalw glimmer predator nbody lu

R
u

n
ti

m
e
 i

n
 P

e
r
c
e
n

t

Actual

Predicted

 40

approach were approximately 45%, and the framework could significantly improve the

overall performance of grid. Therefore, the error percentages in our runtime prediction

would be acceptable. As a result, the predicted runtimes are accurate enough to allow

the scheduler to be more efficient.

In conclusion, our framework can be used for predicting the runtime of the workloads

that have similar execution pattern or characteristic with the trained workloads.

Therefore, the decision tree and the models that are presented in this work can only be

used for the specific group of applications, which includes the applications that have the

similar data transfer and execution patterns as the 7 Berkley's Dwarfs (dense, sparse,

spectral, nbody, sgrid, mapred, and grapht). However, our methodology is apparently

better than the user-estimated approach because the runtimes given by users always

yield more than 50% error [4].

To improve the practicality of the models, they are required to be trained extensively.

More data records, for wide range of applications, are needed to be imported to the

models.

In order to verify the practicality of our framework, the details on the adoption of our

approach in the ALICE O2 project at CERN will be presented in the section. The

traning applications as well as the testing benchmarks will be the real programs used in

the ALICE experiment.

CHAPTER 5 THE ADOPTION OF RUNTIME PREDICTION

FRAMEWORK IN ALICE O2 PROJECT

Through the collaboration between the Computer Department at King Mongkut's

University of Technology Thonburi (KMUTT) and the ALICE's Computer Working

Group at The European Council for Nuclear Research, or CERN, we were able to apply

our framework to predict the runtime of real scientific applications from the ALICE

experiment. This section provides details of the adoption of our runtime prediction

framework, which is a part of the ALICE O2's scheduler. ALICE stands for A Large Ion

Collider Experiment. It is one of 4 detectors of a Large Hadron Collider (LHC) at

CERN. ALICE’s main mission is to study about the highly interacting matters and the

quark-gluon plasma. ALICE O2 is a project of the computer working group under the

ALICE experiment. In fact, ALICE O2 is divided into several subgroups. Our study

involved in only the data acquisition group (DAQ), responsible for receiving the

collision events from the detectors and storing them in storages for further processing.

In order to handle big data, several ten applications were used in ALICE's computer

system.

In the year 2018, the ALICE detectors will be upgraded and the amount of data that will

be produced from the detectors will be higher. The data throughput will be

approximately 1 TB per second. For this reason, the whole ALICE's system has to be

developed. The data flow of the ALICE experiment is shown in Figure 5.1.

Figure 5.1 Data Flow of ALICE

The constraint of the new ALICE experiments is the system should be able to handle a

large amount of particles collision events that will be produced from detectors. The data

acquisition comprises two computer clusters – First Level Processors (FLP) and Even

Processing Nodes (EPN). The two clusters serve different purposes. The FLP cluster is

responsible for controlling the data rate to not exceed 80 GB/s peak and 20 GB/s

average because the data have to be streamed to a permanent storage. Then, the data

will be sent through the network to EPNs for further processing, for example, event

reconstruction.

The mission of the ALICE O2 project is to select the suitable computing platforms, both

FLPs and EPNs, by optimizing the size and cost of an online farm. Various platforms

have been tested out using the benchmark algorithm called 'Pixel Cluster Finder'.

Moreover, the scheduler between the two clusters is required in order to efficiently

propagate jobs and data from FLPs to EPNs. The scheduler is placed in the network

between FLPs and EPNs as illustrated in Figure 5.2.

 42

Figure 5.2 The Position of Scheduler

In order to schedule jobs from FLPs to EPNs, two challenges arise:

1. The scheduler should be able to accurately calculate the runtime of jobs on

different computers because this information will be used in scheduling process.

2. The scheduler should work fast and efficiently because the delay due to the jobs

scheduling may cause severe processing bottleneck, and provoke side effects

like increasing the buffer space needed on FLPs.

Our framework was adopted to satisfy the first challenge mentioned above. The runtime

estimation process was integrated to the scheduler to predict runtimes of the

applications in the system. The estimated runtime would be used further in the

scheduling process.

In this work, complexity analysis was also used in order to find an appropriate runtime

estimation equation. It can be used directly only in the case that a source code of the

application is provided. An application with source code will be henceforth called a

'white-box' application. Notice that the complexity analysis has to be done by hand. In

addition, a runtime equation for each application has to be constructed separately using

linear regression. In this approach, a runtime prediction equation represents a

relationship between inputs and a runtime, for example, runtime = f(xi) where xi is an

input parameter. Moreover, it requires input parameters to calculate the application's

runtime. A method to build a runtime prediction equation using this approach will be

presented in the next subsection.

In a black-box application, the runtime estimation equations are determined by using

the method that was presented in Chapter 3. In order to estimate the runtime of an

application, the profile of the application will be sampling for a certain period by using

MICA and Perf tools. After that, it will be categorized into a dwarf class, and the

classification results will be used to select the runtime prediction model. In the final

step, the runtime in second unit will be computed by using the sample profile as the

input of the runtime estimation model.

The following subsection presents the initial experiment and the results from the

adoption of our runtime estimation framework in the ALICE O2 project. The

experiments were divided into two parts: the experiment on white-box applications

adopting a complexity analysis and linear regression to create runtime equations and the

experiment on black-box applications employing a workload classification, ABC and

linear regression to construct runtime prediction models.

 43

 Initial Experiment and Result for White-Box Applications 5.1
In this section, we applied the complexity analysis technique in collaboration with

linear regression to determine the runtime prediction model for specific applications

with a source code. This method was a contribution from our previous work [35]. The

method for constructing the runtime prediction equation is shown in Figure 5.3.

Figure 5.3 Runtime Estimation Model Construction for Known-Source Code

Application

In order to build the runtime estimation model for a white-box application, a complexity

of the algorithm has to be determined. Application's complexity is a mathematical

equation that represents a relationship between input attributes and runtime of the

application: runtime = F(x1, x2, x3, ..., xn) where xi is an input attribute. After the model

is obtained, an empirical experiment is run in order to get the data records to fit the

model. Then, the model is fitted with the collected data by using linear regression, and

coefficients will be obtained as an output.

In this experiment, we adopted TPC laser events program, with a known source code.

According to the method described above, the complexity of the algorithm is

determined, and the result is shown in equation (5.1).

 R = β1S + β0 (5.1)

 where R is an estimated runtime

 S is an input size in megabyte (Mb)

 β is coefficient of each variable and i is number of variable

Then, we ran TPC laser events by adjusting input sizes in order to get 500 different

runtime values. Notice that the runtime of each input size was an average of 5 replicated

runs. The experiment was run on the Scientific Linux CERN 6 (SLC6) operating

system. The computer used in the experiment had 1 Intel Core i5-4570 CPU @

3.20GHz, 8 GB memory, and 1 TB storage.

After fitting the model using linear regression, we obtained a complete model as shown

in equation 5.2.

 R = 0.0713S + 4.93 (5.2)

The quality of the regression model was measured by R-squared. This model obtains

99% R-squared, which is as high as expected. We plotted a graph between input size

and actual runtime, as shown in Figure 5.4, and we found that they are linearly

correlated. Therefore, it is not surprising that our runtime prediction model, equation

5.1, could achieve a high R-squared value.

Determine

Complexity

Compute

Coefficients using

Linear Regression

Estimated

Runtime

Application with

source code

 44

Figure 5.4 Linear Relationship between Input and Runtime

In order to test the accuracy of the model, we ran the application with the different

input sizes as shown in Table 5.1. Notice that the input sizes from 100 Mb to 500 Mb

were used in model training, while the rest were not.

Table 5.1 Results from Running TPC Laser Events with Different Input Sizes

Input Size (Mb) Predicted Runtime

(s)

Actual Runtime (s) Error (%)

100 12.06 11.93 1.09

200 19.19 18.79 2.13

300 26.32 25.79 2.06

400 33.45 36.22 7.65

500 40.58 39.95 1.58

600 47.71 46.95 1.62

700 54.84 54.06 1.44

800 61.97 62.23 0.42

Given the input size, our mathematical model can accurately predict the runtime of

application with less than 10% error. Even for untrained data, the runtimes can be

predicted with high accuracy. To sum up, this model can be used for calculating the

runtime of the TPC laser events application for both trained and untrained data.

 Initial Experiment and Result for Black-Box Applications 5.2
This experiment used the black-box applications, source code not being provided;

therefore, the method that was presented in chapter 3 was applied. In order to predict a

runtime of an application, the workload classification model and the runtime estimation

equations are required. However, we could not use the same models (as shown in

chapter 3) because the operating systems and hardware of the machines were different.

In this experiment, the machine contained 8-core Intel Core i7-2600 CPU, 8-GB

memory, and 470 GB of storage, and it ran the SLC6 operating system. Thus, we

needed to construct new workload classification model and runtime estimation

equations.

To train the models, we collected the profiles of the benchmarks (shown in Table 3.4)

by using MICA and Perf tools on a master machine. Notice that the master machine had

 45

the same specification as the machine that used in the experiment. A profile of each

benchmark was collected from the beginning to the end of the execution (full-run

profile). For each class of dwarf, we collected 15 profiles where each profile contained

12 metrics. We then obtained 105 profiles of benchmarks to train the models.

For the workload classification model, we applied C4.5 to the training data in order to

build a decision tree. As mentioned in section 3.1, the input attributes for the algorithm

were only 8 MICA metrics. The rules derived from the decision trees are as follows:

Rules for dense

(B ≤ 0.00395 ^ E ≤ 0.994573 ^ H ≤ 0.000786 ^ A ≤ 0.663777) ˅

(B ≤ 0.00395 ^ E > 0.994573 ^ A ≤ 0.712571 ^ A > 0.606547 ^ H > 0.00002)

Rule for sparse

(B ≤ 0.00395 ^ E ≤ 0.994573 ^ H ≤ 0.000786 ^ A > 0.663777) ˅

(B > 0.00395 ^ C > 0.536309 ^ A > 0.635292 ^ F ≤ 0.000025 ^ A > 0.769438 ^ A ≤

0.781248) ˅

(B > 0.00395 ^ C > 0.536309 ^ A > 0.635292 ^ F > 0.000025)

Rule for spectral

(B ≤ 0.00395 ^ E ≤ 0.994573 ^ H > 0.000786) ˅

(B > 0.00395 ^ C ≤ 0.536309 ^ B ≤ 0.011211)

Rule for nbody

(B ≤ 0.00395 ^ E > 0.994573 ^ A > 0.712571 ^ B ≤ 0.00158 ^ C ≤ 0.603917) ˅

(B > 0.00395 ^ C > 0.536309 ^ A ≤ 0.635292)

Rule for sgrid

(B ≤ 0.00395 ^ E > 0.994573 ^ A ≤ 0.606547) ˅

(B ≤ 0.00395 ^ E > 0.994573 ^ A ≤ 0.712571 ^ A > 0.606547 ^ H ≤ 0.00002) ˅

(B ≤ 0.00395 ^ E > 0.994573 ^ A > 0.712571 ^ B > 0.00158)

Rule for mapred

(E > 0.994573 ^ A > 0.712571 ^ B ≤ 0.00158 ^ C > 0.603917) ˅

(B > 0.00395 ^ C ≤ 0.536309 ^ B > 0.011211)

Rule for grapht

(B > 0.00395 ^ C > 0.536309 ^ A > 0.635292 ^ F ≤ 0.000025 ^ A ≤ 0.769438) ˅

(B > 0.00395 ^ C > 0.536309 ^ F ≤ 0.000025 ^ A > 0.781248)

Note:

 A denotes reg_age_cnt_16 E denotes mem_write_local_stride_4096

 B denotes PAg_mispred F denotes mem_write_local_stride_8

 C denotes arith_cnt G denotes mem_write_global_stride_8

 D denotes data_stream H denotes mem_read_loca_stride_8

 46

With stratified 10-fold cross-validation, our model can achieve 81.14% accuracy. The

rules derived from the decision tree were used to categorize applications into a specific

class.

In this experiment, TPC laser event program was used. To build a runtime prediction

equation, we collected the profiles of the TPC laser event with various input sizes and

used them to train the model. Notice that we did not build a model for every dwarf

class. We constructed only a model for the class that the application belonged to. From

the rules presented above, TPC laser event was categorized into dense. Therefore, only

dense runtime prediction equation was constructed. We applied ABC and linear

regression to training data and derived the runtime equation, which can yield 99% R-

squared, as shown in equation (5.3). Notice that notations used in the equation were

referenced from Table 3.6.

runtimedense = 14 + 0.254 sqrt(M) + 5075 G + 60311 I + 0.0441 C

- 79824 K - 13.7 sqrt(A) + 153 log(K) - 11.1 sqrt(C)

 - 7104 sqrt(I) - 1949 power(E, 2) - 146 ln(H) (5.3)

We predicted runtimes of the TPC laser event application with different input sizes by

using equation 5.3. The predictive runtimes are shown in Table 5.2 and Figure 5.5.

Table 5.2 Runtime Prediction Results for Black-box Application

Input Size

(MB)

Actual

Runtime (s)

Predicted

Runtime (s)

Error (%) Note

977 80 64.15 19.82 Trained

1500 116 142.02 22.43

1954 152 150.85 9.56 Trained

2000 154 168.72 0.76

2500 193 243.45 26.14

3000 229 281.17 22.78

3500 266 261.51 1.69

3909 296 315.03 6.43 Trained

4000 354 451.84 27.64

5000 431 504.88 17.14

7819 590 574.36 2.65 Trained

8796 691 626.01 9.41

 47

Figure 5.5 Runtimes of TPC Laser Events in Percent

From Table 5.2, the records that were marked 'Trained' were used in runtime equation

training phase, while the rest were used only during the testing step. The overall

runtime prediction results were accurate for both trained and untrained data. The

prediction errors were approximately between 1% and 30%, which were acceptable.

Apart from TPC laser event, we also validated our framework against another

application, namely 'PHS'. We applied the methods for both white-box and black-box

applications on the data. The experiment procedure followed the same method as the

one for previous application. For the black-box approach, the application was

categorized into the sparse class. From the experimental results, the average runtime

prediction errors for white-box and black-box methods were 3.87% and 4.31%,

respectively. Although the average errors were not significantly different from each

other, the runtime prediction errors for black-box applications were slightly higher than

another approach. Moreover, the highest prediction errors for both methods were

smaller than 10%, which was highly satisfying.

Both runtime estimation approaches presented in this chapter could be used effectively

to predict runtimes of the applications of ALICE O2 project. In the case that source

code is accessible, complexity analysis and linear regression would be applied to build a

runtime estimation equation. This approach is more accurate than another method, but it

requires hand calculation and a runtime equation is specific to the application and

machine.

Moreover, runtime of an application with unknown source code can be also predicted.

In the experiment, we assumed that source code of TPC laser event was not provided.

We used dwarf benchmarks (see Table 3.4 for more details) to train both workload

classification model and runtime prediction equation. In addition to these benchmarks, a

few TPC laser event's profiles with different input sizes were also used for runtime

80.19

122.43

99.24

109.56

126.14

122.78

98.31

106.43

127.64

117.14

97.35

90.59

0 20 40 60 80 100 120 140

977

1500

1954

2000

2500

3000

3500

3909

4000

5000

7819

8796

Runtime in Percent

In
p

u
t

S
iz

e
 (

M
B

)

Predicted

Actual

 48

estimation model training. The accuracy of this model was much less accurate than the

method for white-box applications, however; it was still acceptable. Furthermore, it was

more practical because a runtime prediction model was only dependent to a specific

class rather than the application. Therefore, the number of required runtime prediction

equation could be reduced substantially.

To sum up, the method for white-box applications can predict a runtime with higher

accuracy than the method for black-box applications. However, the source code must be

provided, and a lot of manual processes are required. This method can fail easily when a

new application is introduced to the system, which may seriously interrupt the system

operation. In contrast, the runtime estimation method for black-box applications can

predict the runtime of unknown applications automatically without having to train a

new model. This property is important to a computer system that requires rapidity in job

scheduling, like ALICE's system. Therefore, the runtime estimation framework for

black-box applications is more efficient and more flexible when comes the real system.

CHAPTER 6 CONCLUSION

Cloud computing is a distributed environment platform that has received much attention

during a past few years. Due to the characteristics of the cloud, the users are allowed to

request the computer resources on demands, and the cloud will automatically allocate

and de-allocate the resources upon on the requirement of the users. The resources in the

cloud can be simply accessed via the Internet using the secure communication protocol,

such as, secure shell (SSH) and remote desktop protocol (RDP). For the public cloud,

the cost is usually calculated based on the extent of resources usage.

Since the cloud can provide the users with flexible and excessive computer resources, it

is suitable for executing the high performance computing tasks. However, it is difficult

to efficiently run the HPC applications in the cloud because there are many issues that

must be considered. One of the most important issues is the method to accurately

estimate the runtimes of the applications in the cloud because the runtime is required by

most scheduling algorithm, for example, Backfilling and Heterogeneous Earliest Finish

Time (HEFT). Inaccurate runtime estimation can degrade the performance of the

scheduler, which could lead to the deterioration of the execution performance.

For this reason, we have presented the mechanism to estimate the runtimes of the

applications with unknown-profile on the cloud. Similar to other runtime estimation

approaches, our framework consists of two phases: workload classification and runtime

prediction. However, the key attributes used in our framework are more informative

than those of other works. We utilized 12 performance metrics, measured by MICA and

Perf tools, rather than using a user name and a project name. MICA and Perf metrics

can represent the real characteristics of the applications. These attributes were used in

both workload classification and runtime prediction phases.

The workload classification is the step to categorize an application of interest into a

class that has similar execution behavior. The results from this step were used to choose

the appropriate runtime prediction equation in the next step. The classes were specified

based on the characteristic of the programs that were explained in Berkley's Dwarfs

definition. There are 7 classes, dense, sparse, spectral, nbody, sgrid, mapred, and

grapht, of which labels come from the names of dwarfs. In our work, we used a

decision tree to classify the workloads. The input parameters of the decision tree were 8

MICA metrics, and the output was the name of class that the workload belonged to. The

decision tree could yield 96.89% percent accuracy on a stratified 10-fold cross-

validation.

After the application was already classified, the classification results were used to select

the proper runtime estimation equation because the applications in the different classes

had separated equation for estimating the runtime. In addition, the runtime estimation

equation was also specific to the type of virtual machines that application would be run

on. As shown in chapter 3, there were 21 runtime prediction equations presented

because we had 3 types of virtual machines (General purpose, Compute Optimized, and

Memory Optimized instances) and each machine needed 7 equations. In our framework,

we built the runtime equations by using ABC and linear regression to find the structure

and the coefficients of each equation. The input variables of a runtime equation were 12

performance metrics (MICA and Perf metrics) and the input size, which could be

computed by the method presented in section 3.3.1. The output of the equation was a

 50

predicted runtime. In order to measure the quality of the equations, R-squared was used.

From the test, all equations could achieve high R-squared with at least 82.6%.

In the experiments, we tested our framework against 2 objectives. First, we used the

trained benchmarks to verify that the sample profile (which is the set of MICA and Perf

metrics that are collected for 1 minute) could be used instead of the full-run profile (the

metrics collected from the beginning to the end of the execution). Second, we adopted

the untrained benchmarks in order to ensure that our framework could be also applied to

the untrained data. The actual runtimes for both experiments were collected on 3

instances of Amazon EC2: General purpose, Compute optimized, Memory optimized.

For the experiment on the trained benchmarks, the runtime prediction accuracy for most

benchmarks was higher than 64.49%. We investigated that our framework yielded quite

high error percentages in some cases that the actual runtimes were small. This could be

caused from the insufficient number of small runtime applications in the training data.

However, we can conclude that the sample data can replace the full-run data effectively.

In the untrained benchmarks experiment, we adopted the representative of the scientific

applications from three benchmark suites that has been used widely in many researches:

BioInfoMark, Galois, and LAPACK. The accuracy percentages of the benchmarks that

had the similar characteristics to some benchmarks in the training data were high (less

than 13% error). In contrast, the benchmarks that were not similar to the training

benchmarks obtained high error percentages, which were between 31 and 47. This

problem could be solved by adding similar jobs to the training data. However, the errors

are acceptable since the presence of the higher error in the similar works could improve

the execution performance significantly [7].

With our runtime prediction framework, runtimes of ALICE's applications can be

accurately predicted. This would subsequently benefit to a task scheduler who requires

application runtimes to determine a schedule of jobs. Since the system performance

relies on the job scheduler, we believe that our method can improve the overall

performance of ALICE's computer system.

To sum up, our runtime estimation framework can be used efficiently to predict the

runtime of the unknown application in the cloud computing environment. With our

approach, the scheduler will be able to generate high quality job schedules. Moreover,

this method is more efficient than the user estimation approach. For the future work, we

will run more extensive empirical experiments to collect more training data so that we

can improve the accuracy of the runtime prediction model. In addition, the scheduling

framework on the cloud should be developed so that we can obtain an integrated system

that can efficiently predict the runtime and schedule the workloads on the cloud.

REFERENCES

[1] Baraglia, R., Capannini, G., Pasquali, M., Puppin, D., Ricci, L., and Techiouba, A.

D., 2008, "Backfilling Strategies For Scheduling Streams Of Jobs On

Computational Farms", Making Grids Work, pp. 103-115.

[2] Wieczorek, M., Prodan, R., and Fahringer, T., 2005, "Scheduling Of Scientific

Workflows In The ASKALON Grid Environment", ACM SIGMOD Record

Journal, Vol. 34, No. 3, pp. 56-62.

[3] Srinivasan, S., Kettimuthu, R., Subramani, V., and Sadayappan., 2002,

"Characterization Of Backfilling Strategies For Parallel Job Scheduling",

Proceeding of the International Conference on Parallel Processing

Workshop, pp. 514–519.

[4] Tang, W., Desai, N., Buettner, D., and Lan, Z., 2013, "Job Scheduling With

Adjusted Runtime Estimates On Production Supercomputers", Parallel and

Distributed Computing Journal, Vo. 73, No. 7, pp. 926-938.

[5] Krishnaswamy, S., Loke, S. W., and Zaslavsky, A., 2004, "Estimating

Computation Times Of Data-Intensive Applications", IEEE Distributed Systems

Online, Vol. 5, No. 4.

[6] Smith, W., Foster, I., and Taylor, V., 2004, "Predicting Application Run Times

With Historical Information", Parallel Distributed Computing Journal, Vol. 64,

No. 9, pp. 1007 - 1016.

[7] Xia, E., Jurisica, I., Waterhouse, J., and Sloan, V., 2010, "Runtime Estimation

Using The Case-Based Reasoning Approach For Scheduling In A Grid

Environment", Case-Based Reasoning. Research and Development, pp. 525-

539.

[8] Zhanga, Y., Suna, W., and Inoguchib, Y., 2008, "Predict Task Running Time In

Grid Environments Based On CPU Load Predictions", Future Generation

Computer Systems Journal, Vol. 24, pp. 489-497.

[9] Porter, C., 2011, “IaaS Provider”, Harnessing Public Cloud In HPC: Are All

Infrastructure Providers Created Equal?, pp. 4-5.

[10] Amazon Web Services, Inc, 2014, “Instance Types”, Amazon Elastic Compute

Cloud User Guide API Version 2014-06-15, pp. 101-122.

[11] Evangelinos, C., and Hill, C., 2008, "Cloud Computing For Parallel Scientific

HPC Applications: Feasibility Of Running Coupled Atmosphere-Ocean Climate

Models On Amazon’s EC2", The first Workshop on Cloud Computing and its

Applications (CCA’08).

[12] Netjinda, N., Sirinaovakul, B., and Achalakul T., 2012, "Cost Optimization In

Cloud Provisioning Using Particle Swarm Optimization", Proc. of ECTI-CON

2012, pp. 1-4.

http://aws.amazon.com/ec2/instance-types/

 52

[13] Hoste, K., and Eeckhout, L., 2007, "Microarchitecture-Independent Workload

Characterization", IEEE Micro, Vol. 27, No. 3, pp. 63-72.

[14] Asanovic K., Bodik R., Catanzaro B.C., Gebis J.J., Husbands P., Keutzer K.,

Patterson D.A., Plishker W.L., Shalft J., Williams S.W., and Yelick K.A., 2006,

"The Landscape Of Parallel Computing Research: A View From Berkeley",

Technical Report, UCB/EECS-2006-183, Electrical Engineering and Computer

Sciences, University of California at Berkeley.

[15] Feng, W., Lin, H., Scogland, T. and Zhang, J., 2012, "OpenCL And The 13

Dwarfs: A Work In Progress", Proceedings of the 3rd ACM/SPEC

International Conference on Performance Engineering, ACM, pp. 291-294.

[16] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum,

L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon,

H. D., Venkatakrishnan, V., and Weeratunga, S. K., 1991, "The NAS Parallel

Benchmarks - Summary And Preliminary Results", International Journal of

High Performance Computing Applications, Vol. 5, No. 3, pp. 63-73.

[17] Bailey, D., Barszcz, E., Dagum, L., Frederickson, P., Schreiber, R., and Simon,

H., 1994, “The Kernel Benchmarks”, RNR Technical Report, RNR-94-007.

[18] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Sang-Ha Lee and

Skadron, K., 2009, "Rodinia: A Benchmark Suite For Heterogeneous Computing",

IEEE International Symposium on Workload Charaterization.pp. 44-54.

[19] Manakul, K., Siripongwutikorn, P., See, S. and Achalakul, T., 2012, "Modeling

Dwarfs for Workload Characterization", IEEE 18th International Conference

on Parallel and Distributed Systems (ICPADS), pp. 776 – 781.

[20] Kaiser, A., Williams, S., Madduri, K., Ibrahim, K., Bailey, D., Demmel, J. and

Strohmaier, E., 2010, "TORCH Computational Reference Kernels: A Testbed For

Computer Science Research", Technical Report, UCB/EECS-2010-144.

Electrical Engineering and Computer Sciences, University of California at

Berkeley.

[21] Yu, J., Buyya, R. and Ramamohanarao, K., 2008, "Workflow Scheduling

Algorithms For Grid Computing", Proc. of Metaheuristics for Scheduling in

Distributed Computing Environments, Vol. 146, pp. 173-214.

[22] Udomkasemsub, O., Xiaorong, L., and Achalakul, T., 2012, "A Multiple-

Objective Workflow Scheduling Framework For Cloud Data Analytics", Proc. of

the 9
th

 International Joint Conference on Computer Science and Software

Engineering (JCSSE'12), pp. 392-399.

[23] Vivekanandan, K., Ramyachitra, D. and Anbu, B., 2011, "Artificial Bee Colony

Algorithm For Grid Scheduling", Journal of Convergence Information

Technology, Vol. 6, No. 7, pp. 328 – 339.

 53

[24] Banharnsakun, A., Achalakul, T., and Sirinaovakul, B., 2011, "The Best-So-Far

Selection In Artificial Bee Colony Algorithm", Applied Soft Computing

Journal, Vol. 11, No. 2, pp. 2888-2901.

[25] Karaboga, D. and Basturk, B., 2008, "On The Performance Of Artificial Bee

Colony (ABC) Algorithm", Applied Soft Computing, Vol. 8, No. 1, pp. 687-697.

[26] Karaboga, D. and Akay, B., 2009, "A Comparative Study Of Artificial Bee

Colony Algorithm", Applied Mathematics and Computation, Vol. 214, No. 1,

pp. 108-132.

[27] Taetragool, U., and Achalakul, T., 2011, "Method For Failure Pattern Analysis In

Disk Drive Manufacturing", International Journal of Computer Integrated

Manufacturing, Vol. 24, No. 9, pp. 834-846.

[28] Chou, K. Y., Shih, C. C., Keh, H. C., Yu, P. Y., Cheng, Y. C., and Huang, N. C.,

2013, "Using Decision Tree To Analyze Patient Of Aortic Aneurysm With

Chronic Diseases In Clinical Application", 16th International IEEE Conference

on Network-Based Information Systems (NBiS), pp. 405-409.

[29] Li, Y., and Li, T., 2005, "BioInfoMark: A Bioinformatic Benchmark Suite For

Computer Architecture Research", Technical Report, IDEAL Research, ECE

Dept., University of Florida.

[30] Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M. A., Kaleem,

R., Lee, T., Lenharth, A., Manevich, R., Mendez-Lojo, M., Prountzos, D. and Sui,

X., 2011, "The Tao Of Parallelism In Algorithms" ACM SIGPLAN Notices, Vol.

46, No. 6, pp. 12-25.

[31] Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J.,

Hammerling, S., Demmel, J., Bischof, C. and Sorensen, D., 1990, "LAPACK: A

Portable Linear Algebra Library For High-Performance Computers", Proceedings

of the 1990 ACM/IEEE conference on Supercomputing, pp. 2-11.

[32] Fu, X., Li, T., and Fortes, J., 2006, "Sim-Soda: A Unified Framework For

Architectural Level Software Reliability Analysis", Workshop on modeling,

benchmarking and simulation.

[33] Volkov, V., and Demmel, J. W., 2008, "Benchmarking GPUs To Tune Dense

Linear Algebra", Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, p. 31.

[34] Li, H., Groep, D., and Wolters, L., 2005, "Efficient Response Time Predictions By

Exploiting Application And Resource State Similarities", Proceedings of the 6th

IEEE/ACM International Workshop on Grid Computing, pp. 234-241.

[35] Pumma, S., Achalakul, T. and Xiaorong, L., 2012, "Automatic VM Allocation for

Scientific Application", Proceedings of the 2012 IEEE 18th International

Conference on Parallel and Distributed Systems, pp. 828-833.

CURRICULUM VITAE

NAME Sarunya Pumma

DATE OF

BIRTH

2 August 1990

EDUCATION

2002 – 2007 High School Graduation, Major Science-Mathematics (GPA 3.72)

Satrinonthaburi School, 2002

2008 – 2011 Bachelor of Engineering (Computer Engineering) with the First

Class Honor (GPA 3.84)

King Mongkut’s University of Technology Thonburi, 2008

2012 – 2013 Master of Engineering (Computer Engineering) (GPA 4.0)

King Mongkut’s University of Technology Thonburi, 2012

AWARDS
December 2013 Recipient of an internship grant to work in Switzerland with

CERN, Summer 2014

November 2013 Winner: Asia Pacific ICT Alliance Award 2013 (APICTA)

(Tertiary Student): Hong Kong

November 2013 Winner: The International ICT Innovative Services Contest

2013: Taiwan

August 2013 Winner: Thailand ICT Award 2013 (TICTA) (Tertiary

Student): Thailand

July 2013 Second runner-up: The Imagine Cup World Wide Final 2013

)Innovation Competition): Russia

April 2013 National Winner: The Thailand Imagine Cup 2013: Thailand

February 2013 Winner: The 15
th

 National Software Contest (NSC (Science

and Technology Category): Thailand

October 2012 Recipient of the Thailand Research Fund – Master Research

Grants

June 2011 Best Student Paper Award (Title: Design and Development of

Cloud-based Workflow Data Analytics Platform using

RapidMiner): Thai Grid and Cloud Conference 2011, Thailand

June 2009 Certificate for Academic Excellency (Highest GPA in the class):

King Mongkut’s University of Technology Thonburi

May 2008 Best Cheer Leading Team Award, Engineering games 2008:

King Mongkut’s University of Technology Thonburi

PUBLICATIONS

2013 Pattanangkur, T., Tanupabrungson, S., Areekijseree, K. and

Pumma, S., 2013, "The Design of SkyPACS: a High Performance

Mobile Medical Imaging Solution", The Symposium on GPU

Computing and Applications 2013, Singapore.

2012 Pumma, S., Achalakul, T. and Li Xiaorong, 2012, "Automatic VM

Allocation for Scientific Application", The 18
th

 IEEE

International Conference on Parallel and Distributed Systems

(ICPADS) 2012, pp.828-833, Singapore.

 55

2012 Sukcharoen, P., Pumma, S., Mongkolsermporn, O., Achalakul, T.

and Xiaorong Li, "Design and Analysis of a Cloud-based

Epidemic Simulation Framework", 2012, The 9th International

Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-

CON) 2012, pp.1-4, Thailand.

2011 Pumma, S., Udomkasemsub, O., and Xiaorong Li, 2011, "Design

and Development of Cloud-based Workflow Data Analytics

Platform using RapidMiner", The National Thai Grid and Cloud

Conference 2011, Thailand.

EXPERIENCES

July 2011 – 2013 System analyst and developer: Innosoft, KMUTT, Thailand

 Gather customer requirements and write the design specification

 Develop software

 Validate software

July 2011 –2013 Research Assistant: Computer Engineering Dept, KMUTT,

Thailand

 Survey the existing technologies on cloud-based service

platforms

 Design an open-service platform for Thai’s SMEs

Summer 2011 Research fellow: Institute of High Performance Computing,

Agency for Science, Technology and Research (A*Star IHPC),

Singapore

 Researched on effective workflow scheduling algorithm

 Designed and implemented the cloud-based workflow data

analytics platform by using RapidMiner

November 2011 Sale engineer (internship): IBM Thailand, Thailand

 Studied and presented the cloud computing technology and IBM

cloud solution

SKILLS

Language Skills Thai (mother tongue), English (fluent, IELTS level 7.0)

Computer Skills Full command of Linux operating system (Ubuntu), shell

script, and Xen Cloud Platform

 Excellence in C, C#, JAVA, SQL, VB.NET, HTML, and PHP

programming

