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Abstract 

 

The growth of data and computation in the past decade has brought about the needs for 

cloud infrastructure.  Cloud leverages the Internet as a tool through which remote 

computers can share resources on-demand.  The cloud infrastructure can be utilized as a 

high performance computing (HPC) platform which contains flexible and excessive 

computing resources. In order to efficiently run the HPC applications in the cloud, a 

great deal of technical knowledge is required. One of the challenges is how to estimate 

the runtimes of applications accurately because an inaccuracy in runtime estimation can 

lower the overall performance of a computer system. Moreover, runtime is an important 

attribute for tasks scheduling. For instance, most well known scheduling algorithms, 

such as, Backfilling and Heterogeneous Earliest Finish Time (HEFT), use runtime to 

determine the schedule of the tasks. In this thesis, we have proposed a runtime 

estimation method for unknown-profile applications in the cloud computing 

environment. Unlike other approaches, we also provide a procedure to collect the 

profiles of applications, which are the metrics that represent the execution behavior of 

an application. This allows our approach to predict the runtime of the HPC applications 

even if the metadata is not provided. In order to predict a runtime of a workload, only 

two steps are required. In the first step, the application will be classified into a class 

based on the similarity of the execution characteristics. In our work, we have adopted 

the Berkley's Dwarfs taxonomy to define the classes. The classification result will be 

used to choose a runtime prediction equation for the workload. In the next step, the 

runtime will be predicted by using the equation that is selected in the previous step. The 

runtime prediction equations are constructed by using the Artificial Bee Colony (ABC) 

and the linear regression techniques. In order to verify the practicality of our 

framework, we predicted the runtimes of the HPC applications on three types of virtual 

machines, General purpose, Compute Optimized, and Memory Optimized instances, 

provided by Amazon EC2. Our method can yield low prediction error percentages in 

most cases. Moreover, it can provide more accurate runtime prediction results in 

comparison to the user-estimation method.  
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บทคดัย่อ 
 

อตัราการเพ่ิมข้ึนของขอ้มูลและการประมวลผลในช่วงสิบปีท่ีผ่านมาน ามาซ่ึงความตอ้งการในการใช้บริการ
การประมวลผลแบบกลุ่มเมฆหรือคลาวด ์ทั้งน้ีระบบคลาวด์ใช้ระบบอินเตอร์เน็ตเป็นเคร่ืองมือในการรวม
ทรัพยากรคอมพิวเตอร์ไวด้ว้ยกนัเพ่ือตอบสนองความตอ้งการของผูใ้ช ้โดยระบบคลาวดส์ามารถถูกน ามาใช้
เป็นแพลตฟอร์มส าหรับการประมวลผลแอพพลิเคชนัท่ีตอ้งการทรัพยากรในการประมวลผลสูงได้ เน่ืองจาก
ผูใ้ชส้ามารถร้องขอทรัพยากรในการประมวลผลหรือจดัเก็บขอ้มูลไดต้ามความตอ้งการ อย่างไรก็ตามการ
ประมวลผลบนคลาวดต์อ้งอาศยัความรู้เชิงเทคนิคอย่างมาก ซ่ึงหน่ึงในปัจจยัท่ีควรจะตอ้งพิจารณาคือวิธีการ
ท่ีมีประสิทธิภาพในการค านวณเวลาท่ีใชใ้นการประมวลผลแอพพลิเคชนั เน่ืองจากความคลาดเคลื่อนในการ
คาดการณ์เวลาท่ีใช้ในการประมวลผลอาจส่งผลต่อประสิทธิภาพโดยรวมของระบบคอมพิวเตอร์ได ้
นอกจากน้ีตวัจดัล าดบังาน (Scheduler) ท่ีเป็นท่ีนิยม เช่น  Backfilling และ Heterogeneous Earliest Finish 
Time (HEFT) ใชเ้วลาในการประมวลผลเป็นตวัแปรท่ีส าคญัในการจดัล าดบังานภายในระบบ ดงันั้นงานวจิยั
น้ีจึงน าเสนอวธีิการในการค านวณเวลาในการประมวลผลส าหรับแอพพลิเคชนัเชิงวิทยาศาสตร์บนระบบ
คลาวด ์โดยแอพพลิเคชนัดงักล่าวมกัจะตอ้งการทรัพยากรในการประมวลและจดัเก็บขอ้มูลจ านวนมาก ทั้งน้ี
วธีิการท่ีน าเสนอครอบคลมุไปถึงวธีิการเก็บโปรไฟล ์(Profile) ของแอพพลิเคชนัซ่ึงถูกจดัเก็บในรูปแบบของ
เมตริก (Metrics) ซ่ึงใชใ้นการอธิบายลกัษณะเฉพาะในการประมวลผลของแอพพลิเคชนันั้นๆ ทั้งน้ีการเก็บ
โปรไฟลข์องแอพลิเคชนัจะท าใหส้ามารถคาดการณ์เวลาในการประมวลผลไดโ้ดยไม่ตอ้งอาศยั เมตาดาตา้
ของแอพพลิเคชนั (Metadata) ซ่ึงการค านวณเวลาในการประมวลผลส าหรับงานวิจยัน้ีประกอบด้วย 2  
ข ั้นตอนหลกั โดยในขั้นแรกแอพพลิเคชนัจะถูกแบ่งออกเป็นคลาส (Class) โดยพิจารณาจากลกัษณะเฉพาะ
ในการประมวลผล ทั้งน้ีคณะนกัวจิยัไดอ้า้งอิงการแบ่งคลาสตามงานวจิยัของมหาวทิยาลยัแคลิฟอร์เนีย เบิร์
กลีย ์ซ่ึงแบ่งแอพพลิเคชนัเชิงวทิยาศาสตร์ออกเป็นหมวดหมู่ซ่ึงถูกเรียกว่า คนแคระ (Dwarf) ตามลกัษณะ
การประมวลผลของแต่ละแอพพลิเคชนั ทั้งน้ีผลการแบ่งคลาสจะถูกน าไปใช้ในการเลือกสมการในการ
ค านวณเวลาในการประมวลผลของแอพพลิเคชันในขั้นตอนต่อไป สมการดงักล่าวถูกสร้างข้ึนโดยใช้
อลักอริทึมการจ าลองฝูงผึ้ง (Artificial Bee Colony หรือ ABC) และการวเิคราะห์การถดถอยเชิงเส้น (Linear 
Regression)  ส าหรับการประเมินประสิทธิภาพของวธีิการท่ีน าเสนอนั้น คณะนกัวจิยัไดน้ าวธีิดงักล่าวไปใช้



  iii 

ในการค านวณเวลาในการประมวลผลของแอพพลิเคชนัต่างๆ บนเคร่ืองคอมพิวเตอร์เสมือน  (Virtual 
Machine) 3 รูปแบบซ่ึงใหบ้ริการโดยอเมซอนอีซีทู (Amazon EC2) คือ เคร่ืองแบบทัว่ไป (General Purpose) 
เคร่ืองส าหรับการค านวณท่ีใชห้น่วยประมวลผลสูง (Compute Optimized) และเคร่ืองส าหรับการค านวณซ่ึง
ใช้หน่วยความจ าสูง (Memory Optimized) ทั้งน้ีวิธีการท่ีน าเสนอสามารถคาดการณ์เวลาท่ีใช้ในการ
ประมวลผลดว้ยความคลาดเคลื่อนต ่า รวมทั้งยงัมีความแม่นย ามากกวา่วธีิท่ีใหผู้ใ้ชเ้ป็นผูป้ระมาณเวลาในการ
ประมวลผลอีกดว้ย 
 
ค าส าคญั :  การค านวณเวลาในการประมวลผล / การจดัล าดบังาน / คนแคระของเบิร์กลีย ์/ ระบบคลาวด ์

/ อเมซอนอซีีทู 
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CHAPTER 1  INTRODUCTION 
 

At present, cloud computing is getting more and more popular because of its ability to 

provide the user with resources automatically in a short amount of time. Since cloud 

combines computer resources, such as CPU, memory, and storage, into a virtual place 

called a resource pool, a size of computer resources is changeable depending on 

requirements of user. Moreover, the computational resources can be accessed from 

anywhere via the Internet and are charged as utilization rate of computing power, 

bandwidth, and storage. For these reasons, cloud computing can satisfy the immediate 

need of low cost computing resources. 

 

The cloud platform can be categorized into three main models: public cloud, private 

cloud, and hybrid cloud. A public cloud provides various types of service models that 

charge per usage. Thus, the cost for a use of a public cloud is relatively low because 

there is no purchasing of machines and no maintenance costs. However, an execution 

performance of public cloud cannot be controlled because the computer resources that 

are provided in the public cloud are not 100% dedicated to a single user. Anyone who 

has a user account can access the public cloud’s network via the Internet. On the 

contrary, a private cloud entails high costs for machine purchasing and maintenance. 

Hybrid cloud, which is a combination between public and private clouds, is thus 

introduced in order to gain more benefits from both types of cloud to improve the 

execution performance and cut down the costs.  

  

All the cloud computing platforms mentioned above could be utilized as the high 

performance computing (HPC) platforms that support scientific application executions. 

The scientific applications, which can be categorized into the compute-intensive 

application and the data-intensive application, usually consume a great deal of computer 

resources and execute for a long period. The benefit of using the cloud is to improve the 

performance of execution with regards to optimizing the execution time and costs.  

 

To run the HPC applications in the cloud environment efficiently, a smart job scheduler 

is required. Most scheduling algorithms need the runtimes of the jobs in order to assign 

them to execute on the appropriate machines. For example, Backfilling [1] and 

Heterogeneous Earliest Finish Time (HEFT) [2] require runtime in their scheduling 

processes. Thus, the application runtime is an important attribute for the scheduler. 

However, predicting the runtimes of the applications in a computer system is a difficult 

task because much technical knowledge is needed. To avoid the difficulty, some 

computer systems ask the runtime from the user. Although this method is easy, it is 

inaccurate and inefficient because the user almost always overestimates the runtimes of 

their applications [3]. In addition, some existing runtime estimation methods assume 

that the same user usually runs the same application in the system [4]. Therefore, a user 

name and a project are used as a key. If the application submitted to the system has the 

same key, the runtime is calculated from the actual runtime of the previous run. 

However, this assumption can be violated easily because it is not always true that the 

same user will run the same jobs every time. Moreover, the key used in this method is 

not informative. It does not contain any running behavior of the application. 

 

We then are proposing a methodology to estimate the runtime of the applications in the 

cloud computing environment efficiently. Unlike other approaches, we use the 

informative application characteristics, which contain the execution behavior, to predict 
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a runtime of the application. When the application is submitted to the system, these 

characteristics will be sampled by using the workload characterization tools, namely 

Mica and Perf. Our framework consists of two components: the workload classification 

model and the runtime prediction model. These two components work in sequence. The 

input of both components is a set of MICA and Perf metrics. The workload 

classification model is responsible for categorizing the application into a certain class 

based on its characteristics. The characteristics of the applications in each class are 

referred from the Berkley's Dwarfs taxonomy. In our work, we have a separate runtime 

prediction model for each class of applications on a specific type of virtual machines. 

To select the appropriate model for the application, the classification result is used. The 

prediction model is a mathematical model, built by using the Artificial Bee Colony 

(ABC) optimization with the linear regression technique. With our framework, the 

runtime of the workload can be simply predicted without any additional information 

about the application.    

 

This report is structured as follows: Section 1 has stated introduction of the study, 

Section 2 presents the related works and the background study along with the 

discussions, Section 3 describes our proposed runtime estimation methodology, Section 

4 shows the experiments and results, and Section 5 is the conclusion. 



 

CHAPTER 2  RELATED WORKS AND BACKGROUND 

STUDIES 
 

In this section, a survey of the related works and background knowledge is presented. 

The first sub-section gives details of related works. The other section provides 

information on topics and techniques that have been adopted in our framework.  

 

  Related Works 2.1
The runtime of the application is an important attribute in most scheduling schemes. 

Several scheduling algorithms, for example, Backfilling, and Heterogeneous Earliest 

Finish Time (HEFT), use the runtime in order to optimize the execution costs, such as, 

execution time, monetary cost, and energy consumption. Backfilling [1] is one of the 

First Come First Serve (FCFS) algorithms that allow lower priority applications to be 

scheduled while the first job in a queue (highest priority) is waiting for the computing 

resource. Since Backfilling has to fill short jobs in the available slots without delaying 

high priority jobs, the runtimes of the applications are required. HEFT [2] is a well-

known workflow-scheduling algorithm that schedules tasks based on priorities. Similar 

to the Backfilling algorithm, HEFT needs the runtimes in order to calculate the 

priorities of nodes in the workflow. Without the accurate runtimes, the scheduling 

results might not be satisfactory. 

 

In a computer system, the runtimes of the applications, which are submitted to the 

system, is usually provided by users. However, the user almost always overestimates 

the runtimes, which can violate the overall performance of the system [3]. Tang et al. 

[4] analyzed the job trace from Argonne's Intrepid and found that there were about 50% 

of 275,000 jobs in the system that used only half of the user-estimated runtime to finish 

their executions. They then proposed a methodology to adjust the user-provided runtime 

in order to improve the performance of the supercomputer system. They determined the 

accuracy of the user-estimated runtime by using R = tact/tuser, where tact is the job's actual 

runtime and tuser is the user-estimated runtime. The range of R was between 0 and 1. If 

R was close to 1, then the user-provided runtime was highly accurate. The equation to 

adjust the runtime was simple: tschd = tuser × A, where tschd, tuser, and A were the time used 

by the scheduler, the time provided by user, and the adjustment factor, respectively. In 

order to determine the value of A, four runtime adjustment schemes were presented. The 

adjustment schemes searched for the similar application based on keys (user name of 

the user who submitted jobs and project name) from the historical data in the limited 

time frame and calculated the value of A by averaging the R-values of the similar 

applications. This proposed work could significantly improve the runtime and the 

overall performance of the system. However, the method just assumes that the same 

user will always submit the same project to the system. This assumption cannot be 

applied in the cloud environment since it cannot cover all the usage scenario of the 

cloud. For example, if user A employs the public cloud resources to run different tests, 

the runtime of any applications submitted by user A cannot be predicted. Moreover, the 

attributes used in the runtime prediction do not actually represent the characteristics of 

the application. To solve this, more informative attributes are needed. 

 

Krishnaswamy et al. [5] proposed a method to estimate the computation times for data-

intensive applications. Rather than using the user name and the project name to 

determine the similarity between two applications, they adopted the rough sets theory, 

which could handle the uncertainty in data. The rough sets theory used the historical 



  4 

data to find the subset of attributes that strongly related to the runtimes. The output of 

rough sets was a similarity template. A submitted application would be compared to the 

historical data using the similarity template. Then, the runtime for the application would 

be a mean of the runtimes of the applications in the same category. The work could 

yield a high accuracy for the data mining and high-performance computing applications. 

Nevertheless, this work did not explicitly present the set of attributes that were used in 

the similarity template building so the runtime prediction results may not be precise, in 

the case that the historical data of some applications are limited. In other words, the 

results can only be good in the scenario where most applications are repeatedly 

executed. 

 

In line with previous work, Smith et al. [6] implemented their runtime prediction 

framework based on the similarity templates of the historical applications. The template 

was used to classify applications into groups. The attributes used for classification were 

a set of workload characteristics obtained from the computer system. The search 

techniques, which are greedy and genetic algorithms, were applied to the framework for 

determining the similarity template. The runtime of the application could be derived in 

two ways: using the mean of the runtimes or using the linear equation to calculate the 

runtime. The linear equation used in this work simply established the relationship 

between runtime and number of compute node requested by user: runtime = aN + b, 

where a and b were the coefficients. Notice that the coefficients in linear equations were 

different among different categories. In this work, the application might belong to more 

than one category. Therefore, the estimated runtime with a smallest value of confidence 

interval was selected as an application runtime. Since different computer systems may 

contain different sets of characteristics, the algorithm cannot guarantee that the 

prediction performance of the framework will be good if certain attributes are missing.   

 

The case-based reasoning approach was presented in the work of IBM Canada Lab. Xia 

et al [7] calculated the runtime from the historical information stored in the form of 

cases. In this work, the cases were used to determine the similarity between the 

applications and computers. The cases were defined by using the TA3 algorithm, which 

was a case-based reasoning approach. TA3 classified the cases based on the similar 

runtime assumption determined by a standard deviation. For example, two applications 

that had the similar runtimes on the similar machines would be considered to be similar. 

A case was represented in a data record that contained the job and machine 

characteristics and a priority of the case. The cases priority was used to select the 

runtime of the application in the case that the application was categorized into many 

cases. To estimate the runtime of the new application, the k-nearest neighbor algorithm 

was adopted. It categorized the application into the groups of applications that provide 

the smallest Euclidean distance. Then, the runtime was the average value of the 

runtimes in the case. This approach was experimented on a real system of IBM to 

schedule Functional Regression Tests (FRT), which required a frequent test on various 

platforms. It could obtain high runtime estimation accuracy and achieve higher system 

performance. One drawback of this approach is the certain number of cases is not 

predefined. The number of cases may grow without a boundary, which can deteriorate 

the performance of the system. Therefore, the policy to control the number of cases 

must be well defined. 

 

The previous works used the application-oriented approach that directly employed the 

application information, i.e. user name and project name, for runtime prediction. Zhang 
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et al. [8] proposed a different method, which is the resource-oriented approach, to 

predict the runtime of the workloads in a grid environment. The resource-oriented 

method estimated the runtime by adopting the prediction information of the future 

resources allocation. This approach exploited the benefit of grid that the information of 

resources could be obtained from Grid Information System (GIS). Only the information 

of the CPU load was used in this work. Therefore, this framework proposed a method to 

predict the number of CPU loads of the applications in grid. The complex time series 

model was adopted in CPU loads prediction. Once the number of CPU loads was 

obtained, it was fed to the mathematical model to predict the estimated runtime. The 

simulation of the framework showed excellent runtime prediction results in the grid 

environment. However, this method cannot be applied to the cloud environment since 

the cloud does not allow users to access any hardware event.  

 

From all the related works, the general model for runtime prediction approaches 

comprises 2 main parts: workloads similarity identification and runtime estimation. 

Most approaches adopt the classification or clustering technique in applications 

similarity determination. However, certain sets of attributes used in classification or 

clustering are not explicitly defined in some approaches. This can result in missing of 

data attributes and subsequently can affect to the performance of workload similarity 

identification and runtime prediction. Therefore, a common attributes set, which can be 

collected by using standard method, should be defined. Moreover, some attributes, for 

example, user name and project name, do not have direct impact on the runtime of the 

application. This kind of attributes can be used only in the case that users always run the 

same application in the system. Therefore, the set of attributes or metrics should 

actually represent the characteristic of the application, for example, data movement 

pattern and execution behavior.  

 

In the runtime estimation step, a mean of the runtimes of the similar applications is 

generally used. It is easy to be determined, but may not be precise. As mentioned above, 

a user name and a project name do not truly relate to a runtime. Therefore, the average 

runtime of the application submitted by the same user with the same project name 

cannot ensure that the runtime of the applications will be the same.  

 

Similar to the general runtime prediction approach, our runtime estimation framework is 

also divided into two main parts: workload similarity determination and runtime 

estimation. In workload similarity determination, we employed a set of performance 

metrics, which can be collected by the MICA [13] and the Perf tools. These metrics are 

allowed to be collected on the cloud platform. They can capture the execution behavior 

of the applications, of which data is more informative than attributes used in the related 

works. The metrics are used to categorize an application into a certain class. We used 

the taxonomy of Berkley's Dwarfs [14] to define the classes. The taxonomy categorizes 

the high performance computing applications into 13 classes based on the data transfer 

and running patterns. However, we implemented only seven classes of the dwarfs 

because we cut out some classes that give the redundant characteristic. More detail will 

be provided in the next subsection. 

 

In our work, we used the linear regression equations to estimate the runtime of the 

application. We built a separated runtime prediction model for each class of dwarfs and 

for a specific type of virtual machines in the cloud environment. Therefore, there were 

seven possible runtime prediction models for the application to select. The classification 
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information from the previous step is used to select the runtime estimation model. For 

example, if the runtime of the application A on the machine M is required and the 

application A is classified into class C, then the runtime estimation model for class C on 

machine M is selected.  

 

Our methodology can be used to predict the runtime of the application on the virtual 

machines in the cloud environment efficiently. Since we also provide the method to 

collect the data attribute used in runtime prediction, the problem of attribute missing can 

be solved. Moreover, we used the more informative data attributes in application 

similarity identification step. Therefore, this framework can be used to predict the 

runtime of the application without having to know any metadata of the workload. 

 

  Background Study 2.2
In order to implement the mechanism to predict the runtime of the scientific application 

in the cloud environment, we need to review the Amazon's cloud services, the 

application's performance measurement tool called Microarchitecture-Independent 

Characterization or MICA, the 13th Berkley's dwarfs, and the optimization technique 

used in model construction phase. Details of each study will be expressed and discussed 

one by one.  Moreover, the method and its package that were adopted in our work will 

be presented in the sub-sections below. 

 

2.2.1  The Public Cloud: Amazon Elastic Compute Cloud 

The purpose of this project was to estimate the runtime of the application on the cloud. 

The services on the public cloud computing were then studied.  

 

Amazon Web Service (AWS), Microsoft Azure, Rackspace, and Newservers are a few 

of well-known cloud service providers. These cloud providers offer the infrastructure as 

a service (IaaS) to the users. NewServers is the only one that provides physical cloud 

computing while others offer the virtual machines. Platform Computing Corporation 

[9], an IBM company, tested and measured the quality of each cloud provider in many 

aspects against the standard benchmarks. The instances that are likely to be the user’s 

choice for running high performance computing (HPC) applications were used in the 

experiments. From the testing results, it turned out that Amazon EC2's instances 

outperformed others in almost all benchmarks. Even though the price is the most 

expensive, it is worth of investment [9].  

 

In public cloud, the computing performance is unpredictable because a physical 

machine is shared among users. According to the testing results of Platform Computing 

Corporation mentioned in the previous paragraph, the public cloud that we concerned is 

Amazon EC2. The instance type of Amazon EC2 can be divided into six categories 

[10]; standard instances, micro instances, high-memory instances, high-CPU instances, 

cluster compute instances, and cluster GPU Instances. Each type of instances has 

different capacities – memory, CPU (EC2 compute unit), storage, I/O performance, and 

CPU utilization percentage. Details on each type of instances are as follows: 

 

The Standard instances provide a proper proportion between memory and CPU for 

general application, and they limit the CPU utilization to be a maximum at 50 percent 

for a single processor core [11]. The high-memory and high-CPU instances have high 

capability specifically for high throughput applications and compute-intensive 

applications, respectively. The Micro instances are suitable for an application that does 
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not require high throughput because EC2 computes units can burst for a short period 

which means they allow high CPU utilization percentage only in a short period. The 

Cluster Compute instances (CCI) are suitable for HPC application because of a large 

number of computing units and high network performance. The Cluster GPU instances 

are like having extra graphics processing units (GPUs) attached to the Cluster Compute 

instances, therefore; they are well suited for HPC applications and also media 

processing applications.  

 

In general, cloud service providers offer two purchasing alternatives for cloud instances; 

on-demand instance and reserved instance [12]. The on-demand instances are charged 

according to the per-hour basis usage rate while another instance type uses the advance 

payment policy. The on-demand instances will be more convenient but more expensive 

than the reserved instances. However, users will need a good plan to utilize the reserved 

instances.  

 

The virtual machine instances used in our platform are the high-memory, the high-CPU, 

and the general-purpose instances in the Amazon Web Service.  

 

2.2.2  Microarchitecture-Independent Workload Characterization: MICA 

In order to estimate the runtime of an application, its profile is needed to be collected. In 

this work, we adopted MICA metrics as the application's attributes that will be used in 

runtime prediction.  

 

The MICA [13] project is the work of Hoste and Eeckhout from Ghent University. 

MICA is a pin tool, which is a computing analysis tool, for capturing the profile of the 

workloads on the computer systems. Unlike most characterization tools, MICA is 

microarchitecture independent. With MICA, the profiles of the specific workload on the 

different hardware architecture are the same. However, the workloads are required to be 

compiled by the same compiler and run on the same operating system.  

 

MICA applied a principal components analysis (PCA) in collaboration with a genetic 

algorithm (GA) in order to find the parameters, gathering by the binary instrumentation 

tools, that can represent the microarchitecture-independent characteristics of the 

workloads. From the total of 47 characteristics, only eight of them were obtained: 

1. Probability of a register dependence distance  16 

2. Branch predictability of per-address, global history table (PAg) prediction- by-

partial-matching (PPM) predictor 

3. Percentage of multiply instructions 

4. Data stream working-set size at 32-byte block level 

5. Probability of a local load stride = 0 

6. Probability of a global load stride  8 

7. Probability of a local store stride  8 

8. Probability of a local store stride  4,096 

 

The MICA project were experimented on 118 benchmarks from 6 benchmark suites. 

The results showed that the 8 microarchitecture-independent metrics could efficiently 

characterize the workloads. Moreover, MICA could provide more information and 

accuracy than the microarchitecture-dependent workload characterization tools.  
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In our work, MICA would be used for capturing the characteristic of the dwarfs and the 

benchmarks. The eight metrics would be adopted in the workload classification model 

training phase and the runtime equations construction phase. Moreover, they would also 

be used as the input of both workload classification model and the runtime estimation 

model. 

 

2.2.3  Berkeley's Dwarfs and Benchmark suites 

To select the appropriate runtime estimation model for the predicting the runtime of the 

application, the application has to be classified into a class. The classification results 

would be used to choose the runtime equation for the application. The classes of the 

application defined in our framework are referred from the Berkley's Dwarfs taxonomy 

[14].  

 

In the year 2006, the researchers at the University of California at Berkeley discovered 

that the scientific applications generally have the similar computation patterns and data 

movements which should be categorized into a certain number of types. The Berkeley's 

Dwarfs, which are the classes of scientific applications, were then introduced. The 

similarity in computation behavior and data flow was used to define the membership in 

the class. However, there was no certain algorithmic calculations or numerical methods 

defined in each class since the applications with similar behaviors can be implemented 

differently. Currently, there are thirteen dwarfs [15]. Details of each dwarf are 

explained below. 

 

Dense linear algebra (dense): the data is appropriate to be represented as the dense 

matrices/vectors. This kind of application generally has the unit-stride data access; 

meaning that the elements of array are read/written in sequence. Examples of dense 

linear algebra application are block tri-diagonal matrix and lower-upper symmetric 

Gauss-Seidel. 

 

Sparse linear algebra (sparse): the data generally contains a large number of zero 

values. Therefore, the data is stored in the special format rather than the simple array in 

order to improve the efficiency of data access. The formats, for example; compressed 

sparse row matrix (CSR), compressed sparse column matrix (CSC), and dictionary of 

keys (DOK), create a list of the positions of the non-zero elements and store them in 

another array. The conjugate gradient application is an example of sparse linear algebra. 

 

Spectral methods (spectral): the data for the spectral methods is transformed to the 

frequency domain from the time or spatial domain. The execution usually involves add-

multiple operations and some specific data transformation pattern. Such computing 

pattern is called 'multiple butterfly stages'. The application that can be categorized in the 

spectral methods is Fourier transform (FFT).  

 

N-body methods (nbody): the N-body methods compute the interactions between the 

data points in each time step. The n-body can be implemented in either particle-particle 

or hierarchical particle approach. The difference between the two approaches is 

interactions calculation. For particle-particle method, each data point depends on all 

other points, whereas, for the hierarchical particle method, each point depends on 

multiple points. The N-body simulation in astrophysics, which studies movement of 

bodies in the universe, is an example.  
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Structured grids (sgrid): the data points are stored in a simple grid and updated through 

time. In each time step, the value of each point is calculated by using the values of 

neighbors. One example of the structured grids is Multi-Grid, Scalar Penta- diagonal. 

 

Unstructured grids (ugrid): unlike the structured grids, the unstructured grids store data 

points in the data structure, such as a linked list where the locations of data and the 

neighbor are tracked. The updates of all data points involve large indirect memory 

references since the locations of the points have to be looked up from the list before 

updating. Unstructured adaptive is an example of unstructured grid. 

 

MapReduce (mapred): the model comprises of two execution phases – map and reduce. 

The map function performs the data filtering and sorting, while the reduce function 

aggregates the data. In the map phases, the tasks are independent, i.e., no 

communication is required between the working processes. In contrast, the global 

communication is important in the reduce phase. The example of MapReduce is a 

Monte Carlo application. 

 

Combinational logic (clog): the combination logic applications perform bitwise 

operations on the data, which can achieve high computing throughput. This kind of 

applications repeatedly performs simple operations on a large amount of data. An 

example is cyclic redundancy check. 

 

Graph traversal (grapht): data is represented in graphs. In order to perform a 

computation or search, the algorithm traverses through to a graph. Due to the structure 

of a graph, visiting nodes in a graph involves a great deal of random memory accesses. 

Examples of this include breadth-fist search and bitonic sort. 

 

Dynamic programming (dprog): this approach solves a problem by dividing it into the 

smaller sub-problems. The sub-problems are solved in sequence from the smallest to the 

largest. The solution for the larger problem requires the answers of the smaller ones. 

The well-known problem, which the dynamic programming can be applied, is 0-1 

knapsack. 

 

Backtrack & branch-and-bound (bb): this approach is suitable for searching the optimal 

solution for the problem with massive search space. The branch-and-bound divides the 

search space into a smaller region and finds the solution candidates from the sub-

regions. The A-start algorithm is a well-known branch-and-bound algorithm. 

 

Graphical models (graphic): similar to the graph traversal approach, the data for the 

graphical models is represented in graph. Nodes and edges of the graph represent the 

problem's variables and the conditional dependencies, respectively. Examples are 

Bayesian networks and Hidden Markov Models. 

 

Finite state machines (fsm): the behavior of the algorithm is defined in stages. The 

change of a current stage depends on input of a triggering event or a condition.  

 

The release of the Berkeley's Dwarfs taxonomy results in the implementation of Dwarfs 

benchmark suites. According to the Berkeley's research [14], some of the benchmarks 

in NAS Parallel Benchmark (NPB) [16], from NASA, could be categorized as Dwarfs. 

NPB provides the parallel numerical aerodynamic simulation programs for testing the 
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performances of HPC platforms. NPB can only be run on multicore CPUs platform. In 

addition, the programs in NPB imitate the computation behavior and data movement in 

the computational fluid dynamics applications. For each application, the size of a 

problem, which is dependent to the input size, is divided into the predefined classes 

[17]: 1) S - small size, 2) W - legacy workstation size, 3) A, B, C - standard size (4 

times bigger from one class to another), and D, E, F - large size (16 times bigger from 

one class to another).  

 

Rodinia benchmark suite [18] was implemented by a group of researchers at University 

of Virginia. This benchmark suite consists of the diverse range of applications and 

kernels that cover six classes of Berkeley's Dwarfs [19]. The classification of dwarfs 

was based on the dwarf taxonomy given by Berkeley. The performance of the 

benchmark on the parallel platforms, which are multicore CPUs (OpenMP) and GPUs 

(CUDA), was measured.  

 

In 2010, Berkeley released a Testbed for Optimization ResearCH or TORCH 

benchmark suite [20]. TORCH comprises 13 different classes of kernels written in C 

and MATLAB. Each class in the benchmark represents one of the Berkeley's Dwarfs. 

Similar to other benchmarks, TORCH were tested in various aspects including 

scalability, solution verification, and solution quality. Moreover, each kernel in the 

benchmark suite was mapped to the existing benchmarks in order to validate the 

practicality of TORCH.  

These computing benchmarks will be run in the empirical study to collect the profile of 

the benchmarks. The profile collection will be used in a classification model training 

and runtime estimation equation construction. In order to avoid the redundant 

characteristic among classes, we used only seven classes of dwarfs – dense, sparse, 

spectral, nbody, sgrid, mapred, and grapht. The ugrid, bb, graphic, and fsm 

applications involve graph traversals in the calculation, therefore; using only grapht 

was sufficient in our framework. Moreover, the characteristics of clog and dprog can be 

represented by nbody because they repeatedly perform the operations to complete the 

task.  

2.2.4  Optimization Algorithm 

The runtime of the application is predicted by using the mathematical model that 

represent the relationship between the application's attributes (the set of MICA and Perf 

metrics) and the runtime. To build the mathematical model, we have employed the 

optimization method. The input of the optimization algorithm is a set of application 

attributes. The output is the runtime prediction equation.  

 

Details on this section are the reviews of the optimization techniques. We mainly focus 

on the heuristic-based algorithms because of the efficiency in massive application 

scheduling. Heuristic-based scheduling algorithms can be categorized into two groups; 

heuristic algorithm and meta-heuristic algorithms [21]. Although these two categories 

apply a heuristic process in solution searching, their search methods are different. Both 

types of the heuristic based algorithm apply the exploration concept for searching the 

good-enough solution in an unexplored search space in order to avoid local optimum 

solution. For meta-heuristic, an exploitation concept is integrated in the algorithm for 

intensive finding a new solution. From the exploitation concept, meta-heuristic keeps 
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improving for the best solution found in previous searches until the search boundary, 

for example; iteration number is reached. 

 

The heuristic [22], which is an experience-based solution searching method, does not 

search for the best solution, rather for a good enough solution. Therefore, not all 

possible solutions are to be considered. This kind of approach is suitable for the 

problem with a massive search space. Adopting a similar method, the meta-heuristic 

approach calibrates a candidate solution against a quality measurement, for example; 

fitness value, to derive a good-enough solution from a solution space. Artificial Bee 

Colony (ABC) [23] is the meta-heuristic scheduling algorithm that we chose because 

the performance of ABC, based on several researches [24],[25],[26], outperformed the 

other algorithms. 

 

ABC mimics the food source searching behavior of bees. It consists of three phases; 

employed bee, onlooker bee, and scout bee phases. 

 

The sequence of ABC algorithm can be shown in Figure 2.1. 

 

Artificial Bee Colony Algorithm  

1 Randomly generate initial solutions  

2 WHILE Termination criteria are not satisfied DO 

3 Employed bees find better food sources in the adjacent area 

4 Onlooker bees find better food sources around the existing sources 

based on the employed bee waggle dance 

5 Scout bees search for the new food sources 

6 Keep the best so-far food sources 

7 END WHILE 

Figure 2.1 ABC Algorithm 

The ABC algorithm initially generates a set of feasible solutions, which are the food 

sources. In order to discover better food sources, three types of bees iteratively perform 

different tasks for developing the food sources. The employed bees are responsible for 

searching better food sources in the neighborhood. Then, the employed bees will 

perform the waggle dance to present the goodness of the discovered food sources. The 

onlooker bees will forage in the vicinity of existing food sources depending on the 

dance of employed bees. Thus, the best food sources have more probabilities to be 

visited by the onlooker bees. In contrast, the food sources that are arid will be dropped 

and replaced by new sources that have been found by the scout bees. The best food 

sources will be kept in each iteration until the stopping criterion is met. 

 

The advantage of the ABC is it has the exploitation and exploration phases which 

enable thorough searching over the solution space. The ABC algorithm using a 

mathematical equation in solution adapting phase which is more efficient for continuous 

problems. However, the rounding technique can be applied in order to transform the 

solution to be discrete. 

 

With this approach, appropriate mathematical models to predict the runtime of the 

applications are constructed. The detailed method of how to build the model by using 

ABC will be presented in the next chapter. 



 

CHAPTER 3  RUNTIME ESTIMATION FRAMEWORK 
 

As mentioned in the previous chapter, our proposed framework can be utilized to 

estimate the runtime of workloads with an unknown profile in a cloud computing 

environment. The unknown profile process can be called a 'black-box application'. The 

overall sequence of our method is shown in Figure 3.1. 

Figure 3.1 The Overall Methodology 

 

As illustrated in Figure 3.1, there are three main steps in the proposed framework. Once 

a black-box application is submitted to the system, a profile of the workload will be 

collected. This step is called 'profile sampling'. In this step, the application will be run 

for a certain period for sampling its profile, which is a set of MICA metrics and Perf 

metrics.  

 

Then, the workload's profile will be fed to a workload classification model in order to 

categorize the workload into a class. The class contains the workloads that have similar 

execution behaviors. As mentioned in the previous chapter, the classes of workloads are 

defined based on the taxonomy of Berkley's Dwarfs. We used only 7 out of 13 classes 

of dwarfs because some of them had repeating characteristics as others. Therefore, our 

framework and experiments are presented based on the 7 dwarfs. The 7 classes of 

dwarfs are shown in Table 3.1. Notice that the notations of dwarfs defined in Table 3.1 

will be used throughout the report. The classification information will be used for 

selecting an appropriate runtime prediction model for the workload.  

 

Table 3.1 The Class of Dwarfs Used in This Framework 

Dwarf's Name Notation 

Dense linear algebra dense 

Sparse linear algebra sparse 

Spectral methods spectral 

N-body methods nbody 

Structured grids sgrid 

MapReduce mapred 

Graph traversal grapht 

 

In the last step, the runtime of the workload will be predicted by using the mathematical 

model selected from the previous step. The input attributes for the runtime estimation 

model are both MICA metrics and Perf metrics. In addition to our framework, the 

runtime can be used further in workload scheduling in case that a profile of the process 

is unknown.  
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Runtime 
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The elaboration on each step in our methodology will be explained in three separate 

subsections: profile collecting and sampling, workload classification model, and 

runtime estimation model. 

 

  Workload Profiles Collecting 3.1
The profile of the application, which comprises 12 attributes, is used as input for both a 

workload classification model and a runtime estimation model. In the model 

construction phase, the profiles of the several benchmarks are also used as a training 

data. This section explains the workload profiling procedure. 

 

In our work, we collected a total of 12 metrics from two workload characterization 

tools: MICA and Perf (a Linux profiling tool). Eight microarchitecture-independent 

metrics came from MICA, whereas the rests from Perf. However, the performance 

metrics, from Perf, are dependent to hardware architecture. Unlike a user name and a 

project name, these metrics can represent the actual execution characteristic of the 

applications.  The Table 3.2 shows the list of metrics used in our framework. Notice 

that the notations of the metrics presented in Table 3.2 will be used throughout the rest 

of the report. 

Table 3.2 The List of Metrics 

Tool Metric Notation 

MICA 

1. Probability of a register dependence 

distance  16 

reg_age_cnt_16 

2. Branch predictability of per-address, 

global history table (PAg) prediction- 

by-partial-matching (PPM) predictor 

PAg_mispred 

3. Percentage of multiply instructions arith_cnt  

4. Data stream working-set size at 32-byte 

block level 

data_stream 

5. Probability of a local load stride = 0 mem_read_local_stride_8 

6. Probability of a global load stride  8 mem_read_global_stride_8 

7. Probability of a local store stride  8 mem_write_local_stride_8 

8. Probability of a local store stride  

4,096 

mem_write_local_stride_4096 

Perf 

9. CPU clock cpu 

10. Task clock task 

11. Page faults fault 

12. Context switches cs 

 

In fact, the Perf tool can measure both hardware events (e.g., CPU cycles, instructions, 

cache references) and software events (e.g., CPU clock, task clock, page faults). 

However, we could collect only the software event metrics because the virtual machines 

in the cloud do not allow users to access the hardware events. Therefore, only 4 

software events were used. 
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Figure 3.2 Benchmark Profiles Collecting Workflow 

 

The sequence of benchmark profiles collecting is illustrated in Figure 3.2. We 

performed this process to collect the training data for model construction. In order to 

collect the profiles, the benchmarks were run on the master computer and the metrics 

are captured by MICA and Perf. Once the set of metrics are obtained, it will be used in 

the models construction phase. This step requires a large amount of data, which is a set 

of workload profiles, to train the models. The workload classification model needs the 

profile to build a decision tree for categorizing the workloads into classes. The runtime 

estimation models apply the linear regression technique to fit the attributes of the 

profiles to the mathematical models. More details on the models construction 

procedures will be presented in this chapter.  

 

As shown in Figure 3.2, only MICA metrics are used in workload classification model 

training because the classification results should be independent to the hardware 

architectures. Thus, MICA metrics, which are microarchitecture-independent metrics, 

are employed. However, all the collected metrics will be used in runtime estimation 

model training since the runtime of a workload must be specific to the machine. 

Therefore, Perf metrics, which are dependent to machines, are used in collaboration 

with MICA metrics in the runtime estimation models construction.  

 

The master computer used for collecting the profile of the workloads runs the Ubuntu 

12.04 operating system. The compilers for C and C++ are gcc-4.4 and g++-4.4, 

respectively. Since MICA is the extension of a pin tool, we had to install the pin tool 

version 2.11 on the computer. Notice that the later versions were not compatible with 

MICA. We installed the latest version of MICA, version 0.40, on our machine. The Perf 

tool that we installed was version 3.2.53. 

 

The training data that we used in models construction step are the profiles of 20 

benchmarks, from 3 benchmark suites. The classes of the benchmarks were known. The 

period of profile collecting was equal to the execution time of each benchmark. We also 

adjusted the input parameters in order to obtain the profiles of the workloads with 

various input sizes and runtimes.  The list of benchmarks is shown in Table 3.3. 
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Table 3.3 The List of Benchmarks 

Benchmark Benchmark Suite 

kmeans 

lud 

nn 

heartwall 

hotspot 

lavaMD 

leukocyte 

particle 

Rodinia 

lu (A,B,S) 

ep (A,B,C,S) 

sp (A) 

cg (A,B,C,S) 

NPB 

dense 

integerSort 

quickSort 

radixSort 

monteCarlo 

nbody2d 

sparse 

spectral 

TORCH 

 

In our work, the MICA and performance metrics (Perf metrics) were collected 

separately because machine did not allow multiple tools to analyze the workload at the 

same time. To collect the profile of the workload, the Linux shell scripts were used to 

leash the profile gathering process. 

 

For MICA metrics, we captured the data every one million instructions. Then, we 

obtained the set of raw metrics in a file. The raw metrics were calculated using the 

formulas given in a manual in order to retrieve the MICA metrics. At the final step, the 

values in each MICA metric were averaged. Therefore, the MICA metrics that we used 

throughout the project were the averaged values of a full-length run of the workload. 

 

In order to measure the performance metrics, a simple 'perf' command was run. Unlike 

MICA, the metrics-collecting interval cannot be defined. Thus, we executed the 'perf' 

command every 2 seconds instead. The performance metrics were contained in a file. 

As same as the MICA metrics, the mean of the values in each performance metric were 

computed.  

 

In the experiment, the method to sample the profile of the workload is the same as the 

procedure that is presented in this section. However, the sampling period was shorter. 

Details of profile sampling methods will be presented in the next chapter.  

 

  Workload Classification Model  3.2
The classification model is used for categorizing an unknown-profile workload into a 

class of dwarfs. The classification result is further utilized in the runtime prediction 

step. As mentioned earlier, our proposed framework was based on the 7 Berkley's 

dwarfs. We can map the benchmarks to the Berkeley's dwarfs as shown in Table 3.4. 
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Table 3.4 Mapping Between Benchmarks and Dwarfs 

Dwarf Kernel / Application 

Rodinia NPB TORCH 

dense kmeans 

lud 

nn 

lu (A,B,C,S) dense 

sparse - cg (A,B,C,S) sparse 

spectral - - spectral 

nbody - - nbody2d 

sgrid heartwall 

hotspot 

lavaMD 

leukocyte 

particle 

sp (A,B,C,S) - 

mapred - ep (A,B,C,S) monteCarlo 

grapht - - integerSort 

quickSort 

radixSort 

 

To train the model, we collected 255 different workload profiles as a training set. Only 

MICA metrics were used in this step because, as mentioned in the previous section, we 

needed the hardware-independent classification results. The attributes of the model 

were the MICA metrics, which are the floating number between 0 and 1. The labels 

were the 7 classes of dwarfs: dense, sparse, spectral, nbody, sgrid, mapred, and grapht.  

 

We plotted the Kiviat diagram for each dwarf, shown in Figure 3.3, in order to analyze 

the similarity of the different applications in the same class of dwarfs. Each axis 

represents the MICA metrics. The polygon in each diagram represents the plot of each 

application in the specific class of dwarfs (see the list of applications in the same class 

in Table 3.4). The values plotted in the graph are normalized in Z-scores, equation (3.1).  

 

   
   ̅
  

 (3.1) 

 

 where Z is Z-score 

 X is the value to be normalized 

  ̅ is the mean of all values 

 sd is the standard deviation of all values 

 

From Figure 3.3, the benchmarks in the same class have similar MICA metrics. This 

can be seen from the shapes of the polygons in the same graph. Therefore, we could use 

this data in model training because the applications in the same class could establish 

similar program characteristics.  
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a) dense b) sparse c) spectral 

 

 

 

 
 

d) nbody e) sgrid f) mapred 

   

 

 

g) grapht  

 
 

Figure 3.3 Kiviat Diagrams of MICA Metrics 
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3.2.1 Workload Classification Model Construction 

In order to select the classification method, we used Weka, which is a data mining 

analysis tool, to run several classification methods, Bayesian Network, k-NN, Rule-

Based, and Decision Tree, to compare the classification results. It turned out that every 

approach could give comparable good results. We then selected a C4.5 algorithm to 

build a classification model, which is a decision tree, since a decision tree is simple, and 

the result is easy to be interpreted. Moreover, C4.5 has been used widely in the real 

applications [27],[28]. 

 

The results from the decision tree algorithm are a set of rules, derived from the decision 

tree, for classifying the application into classes. The rules are represented in the 

Boolean expressions, which ^ and ˅ denote and and or operations. The conditional 

expressions use <, ≤, >, and ≥ to represent less than, less than or equal, greater than, 

and greater than or equal operations, respectively. Moreover, we used the following 

notation to represent the name of MICA metrics: 

 A denotes reg_age_cnt_16 

 B denotes PAg_mispred 

 C denotes arith_cnt 

 D denotes data_stream 

 E denotes mem_write_local_stride_4096 

 F denotes mem_write_local_stride_8 

 G denotes mem_write_global_stride_8 

 H denotes mem_read_loca_stride_8  

 

Since there was a rule for every class, there were 7 rules in total. To use the rules to 

classify the application, the MICA metrics must be known. The application would be 

categorized into the class only if all the conditions in the rule of that class were valid. 

The rules are as follows: 

 

Rules for dense 

(A ≤ 0.658527 ^ F ≤ 0.001908 ^ B ≤ 0.00019 ^ G ≤ 0.000094) ˅ 

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B > 0.00019 ^ H > 0.000014 ^ F ≤ 0.000027) ˅ 

(A ≤ 0.648527 ^ F > 0.001908) ˅ 

(A > 0.64852 ^ H > 0.000014 ^ B ≤ 0.004874 ^ E > 0.99348) 

 

Rule for sparse 

(A > 0.648527 ^ H ≤ 0.000014 ^ E ≤ 0.99072) ˅ 

(A > 0.648527 ^ H > 0.000014 ^ B ≤ 0.004874 ^ E ≤ 0.99348 ^ B > 0.001732) ˅ 

(A > 0.648527 ^ H > 0.000014 ^ B > 0.004874 ^ D ≤ 3833.065186 ^ F > 0.000011) ˅ 

(A > 0.648527 ^ H > 0.000014 ^ B > 0.004874 ^ D > 3833.065186) 

 

Rule for spectral 

(A > 0.648527 ^ H > 0.000014 ^ B ≤ 0.004874 ^ E ≤ 0.99348 ^ B ≤ 0.001732) 

 

Rule for nbody 

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B ≤ 0.000109 ^ E > 0.999893) 
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Rule for sgrid  

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B ≤ 0.00019 ^ G > 0.000094) ˅ 

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B > 0.00019 ^ H ≤ 0.000014) ˅ 

(A ≤ 0.648527 ^ F ≤ 0.001908 ^ B > 0.00019 ^ H > 0.000014 ^ F > 0.000027) ˅ 

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B > 0.000109 ^ B ≤ 0.006144 ^ E > 

0.996586) 

 

Rule for mapred 

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B ≤ 0.000109 ^ E ≤ 0.999893) ˅ 

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B > 0.000109 ^ B ≤ 0.006144 ^ E ≤ 

0.996586) ˅ 

(A > 0.648527 ^ H ≤ 0.000014 ^ E > 0.99072 ^ B > 0.000109 ^ B > 0.006144) 

 

Rule for grapht 

(A > 0.648527 ^ H > 0.000014 ^ B > 0.004874 ^ D ≤ 3833.065186 ^ F ≤ 0.000011) 

 

The stratified 10-fold cross-validation was applied to the model in order to measure the 

quality of the decision tree. The stratified cross-validation ensures that the testing data 

in each fold is sampled from all classes. Our decision tree yielded a high accuracy of 

96.89 percent. The experiment on the classification model will be presented in Chapter 

4.  

 

  Runtime Estimation Model 3.3
Our work aimed to predict the runtime of the workloads on the cloud. Thus, three types 

of Amazon EC2's on-demand instances were adopted. Based on the survey, we selected 

the instances that were likely to be chosen for a high performance computing purpose. 

The list of virtual machines used in this framework is shown in Table 3.5.  

 

Because there were 7 dwarfs with different profiles, each instance type required 7 

runtime estimation models. Each model could only estimate the runtime for a specific 

dwarf on a specific machine. For this reason, a benchmark or a workload had to be 

accurately classified into a dwarf on specific machine before predicting a runtime. 

Therefore, there was 21 runtime prediction models in total. 

 

The runtime prediction model is a mathematical equation that describes the relationship 

between the metrics, an input size, and a runtime. The runtime is a dependent variable, 

but the rest are not.  

 

In the previous section, we described the procedure to obtain a set of metrics from 

MICA and Perf. However, there is another important input to the prediction model, 

which is an input size of the workload. The input size has to be well defined since it can 

affect to a precision of a prediction. We then defined the way to normalize the input size 

for each dwarf.  
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Table 3.5 Instances of Amazon Web Service that Used in the Framework  

Name Type Capacity 

m1.large General purpose 4 ECUs
1
 

2 vCPUs
2
 

7.5 GB Memory 

2 x 420 GB Storage 

Moderate network performance 

c1.xlarge Compute optimized 20 ECUs
1
 

8 vCPUs
2
 

7 GB Memory 

4 x 420 GB Storage 

High network performance 

m2.2xlarge Memory optimized 13 ECUs
1
 

4 vCPUs
2
 

34.2 GB Memory 

1 x 850 GB Storage 

Moderate network performance 
1ECU is a computing unit of Amazon EC2, which is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon 

processer 
2vCPU is a number of virtual CPU  

 

In the following subsections, the normalization of the input sizes is presented in the first 

section, and the detailed explanation on the steps to derive a mathematical equation for 

each dwarf is given in the last section. 

 

3.3.1  Input Size Generalization 

In addition to the 12 metrics, the input size of the workload is also required in the 

runtime prediction step. Basically, the different applications may have different ways to 

define the input size, even for the applications in the same class of dwarfs. We defined 

the method to normalize the input size for each type of dwarf. The details are provided 

below. 

 

dense: a data of dense is usually represented in a matrix/vector. The algorithm generally 

iterates over the matrix/vector in order to access, read or write, the elements. Thus, a 

dimension of the matrix/vector importantly affects the runtime of the dense application. 

We defined the input size of dense as follows: 

 

 (input size)dense = n × m (3.2) 

 

 where n is the number of rows of a matrix/vector 

  m is the number of columns of a matrix/vector 

 

sparse: a data of sparse is similar to dense. However, it contains a large number of zero 

elements. Therefore, the data is stored in a special matrix/vector, which memorizes only 

the non-zero elements, in order to optimize the memory space. We then defined the 

input of sparse as follows: 

 

 (input size)sparse = nnz (3.3) 

 

 where nnz is the number of non-zero elements 
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spectral: the spectral methods transforms the data from a spatial domain to a frequency 

domain. The following equation can be used for normalizing an input size of the two 

dimensional data. 

 

 (input size)spectral = n (3.4) 

 

 where n is the number of data to be transformed 

 

nbody: the nbody applications calculate the interactions between the data points. The 

data points are computed through the defined time steps. Thus, the input size is directly 

respected to the number of particles and the time steps. The input size normalization for 

nbody is shown as follows: 

 

 (input size)nbody = n × (time steps) (3.5) 

 

 where n is the number of particles/bodies 

  time steps is the number of time steps to be simulated  

 

sgrid: for sgrid, data is stored in a grid and updated in every time step by exploiting the 

values of its neighborhood. The input size equation is as follows: 

 

 (input size)sgrid = n × m × (time steps) (3.6) 

 

 where n is the number of rows 

  m is the number of columns 

  time steps is the number of time steps to be computed 

 

mapred: the mapred applications usually involve a large amount of data. The input size 

then depends on the number of data as shown below: 

 

 (input size)mapred = n (3.7) 

 

 where n is the number of data item 

 

 

grapht: for grapht, the number of nodes in a graph strongly affects a value of input size. 

Thus, the input size can be computed as follows: 

 

 (input size)grapht = n (3.8) 

 

 where n is the number of nodes in a graph 

 

Notice that this step requires an expert to determine the input size of the workload. The 

input size for each dwarf is a simple product of the input parameters. However, the 

calculation of the input size does not need to be complex because, in the next step, it 

will be composed in the runtime prediction model.  
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3.3.2  Runtime Estimation Model Construction 

From the previous steps, the 12 metrics (from MICA and Perf) and the input size were 

obtained. In order to construct the runtime estimation model for each dwarf, the 

relationship between the inputs and a runtime has to be defined. Therefore, we collected 

a training data, which contained various input parameters and runtimes. Each data 

record consisted of the 12 metrics, an input size, and a runtime of the workload. Due to 

some availability of the benchmark functions, we could not collect the data for the 

dwarfs evenly. The minimum and maximum number of data records were 34 and 50, 

respectively.  

 

In order to determine such relationship, we adopted the Artificial Bee Colony algorithm, 

also known as ABC. The ABC algorithm mimics a foraging behavior of bees.  In our 

context, the solutions were the food sources of bees. The goal of ABC is to find the 

mathematical model that can best describe the relationship between the inputs and a 

runtime, in linear time. The brief steps of ABC are shown in Figure 3.4. 

 

 
 

Figure 3.4 ABC Steps 

 

From Figure 3.4, ABC starts by finding the possible structure of the equation. For 

example: runtime = β1x1 + β2x2 + ... + β0; where βi and xi are coefficients and 

independent variables. The coefficients of the equation are not known in the first place, 

therefore; ABC computes the coefficients by using linear regression in the next step. 

Before applying linear regression to the training data, we ensured that the data were 

normally distributed by plotting probability graphs of the runtimes. The graphs 

indicated that the runtimes of all data sets were normally distributed. Under normality 

assumption, linear regression can be efficiently used to fit data to the model. To 

evaluate an accuracy of the model, the R-squared is then calculated. The more R-

squared is closer to 1 (100%), the higher the accuracy of the prediction model. The R-

squared can be computed by using equation (3.9).  

 

 R-squared = 1 - 
∑        

 
 

∑      ̅   
 (3.9) 

  

 

 where yi is an actual value 

  fi is a predicted value 

   ̅ is a mean of the actual values 

 

Solution adjustment phase 

(Perform by bees) 

A set of metrics, 
input size and 

runtime 

Find the 

structure of an 
equation 

Compute 

coefficients 

Compute R-

squared 

Runtime 

prediction 

model 



  23 

 

After that, the structure of the equation is iteratively developed. Once ABC stops, the 

runtime prediction model is derived. 

 

The objective of ABC is to minimize the R-squared value of the equation. Thus, the 

objective function and fitness value of the ABC algorithm are shown in equation (3.10). 

 

 Maximize    fitness = R-squared(solutioni)   ; 1 < i < n (3.10) 

 

 where n is a total number of bees 

 

In this work, interactions between applications’ attributes were not considered because 

examining variables interactions would significantly increase a size of the search space, 

and a good enough solution might not be obtained in the linear time. For ABC, the 

solution is encoded in 3 main arrays: Term, Function, and Operation. Details for each 

array are presented in Table 3.6. 

 

Table 3.6 Arrays for ABC 

Array Description Possible Values Length 

Max Min 

Term (T) It stores the 

selected input 

parameters of the 

workload. 

cpu_clock (A) 

task_clock (B) 

page_fault (C) 

context_switch (D) 

arith_cnt (E) 

PAg_mispred (F) 

reg_age_cnt_16 (G) 

data_stream (H) 

mem_read_local_stride_8 (I) 

mem_read_global_stride_8 (J) 

mem_write_local_stride_8 (K) 

mem_write_local_stride_4096 (L) 

input_size (M) 

11 2 

Function 

(F) 

It stores the 

selected 

functions for the 

input parameters 

(p). 

p 

log(p)  

ln(p) 

power(p,m) 

sqrt(p)  

= p 

= log10(p) 

= ln(p) 

= p
m
 , 2 ≤ m ≤ 4 

= √  

11 2 

Operation 

(O) 

It stores the 

mathematical 

operations. 

add (+) 

subtract (-) 

 

10 1 

 

The structure of the solution is shown in Figure 3.5. 
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Figure 3.5 Structure of ABC's Solution 

 

One solution must consist of at least two terms, two functions, and one operation. 

Moreover, we limited a number of terms to not exceed 11 in order to control a number 

of feasible solutions. For this problem, a size of search space became 13
11

 × 5
11

 × 2
10

, 

about 6.9 × 10
21

. 

 

There were 3 types of bees responsible for finding the best food source; employed bee, 

onlooker bee, and scout bee. At the beginning of the algorithm, each employed bee 

randomly created the solution. Thus, the number of initial solutions was equal to the 

number of employed bee in the colony. Then, the solutions were iteratively developed 

until the termination criterion was satisfied. In this project, the algorithm would stop 

when a number of calculation-iterations reached a defined threshold. 

 

1. Employed bee phase 

 For each loop, each employed bee improved its solution. A new solution was 

developed by randomly selecting the positions in the arrays to adjust. For each 

selected position, a probabilistic value, a new random value, and a neighbor's 

value were used in order to compute the new value. The formulas are shown in 

equation (3.11) to equation (3.14). 
 

 indexA = Random(Integer < lengthA) (3.11) 

 oldValue = A [indexA] (3.12) 

 newVal = Random(Integer  possibleA) (3.13) 

 A[indexA] = oldVal + Random(-1,1) × (oldVal - newVal) (3.14) 

 

where indexA is a selected index of the array A to adjust 

 lengthA is the number of items in the array A 

 possibleA is a set of possible values in the array A 

 oldVal is an old value in the array A at IndexA 

 newVal is a new value that is randomly selected 

 

2. Onlooker bee phase 

In each round, an onlooker bee selected a solution from an employed bee by 

using probabilistic selection shown in equation (3.15). 

 

    
                  

∑            
 
   

   ; 1 < i < n  (3.15) 

  

 where n is the total number of bees  

 

 Then, it adjusted the solution by using the same method as employed bees. 

 

... Term 

(T) 

Function (F) 

Operation (O) 
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3. Scout bee phase 

After the selected solution was adjusted in the earlier phases, the fitness value of 

adjusted solution was then calculated and compared to the fitness value of the 

original solution. If the adjusted solution got better, it would replace the original 

one. On the other hand, if it was poorer, the original solution would not be 

replaced, however, the un-improvement counter of this solution would be 

increased by one. 

 

 In this phase, if the value of un-improvement counter reached the threshold, this 

solution would be dropped and it would be replaced by a new solution, which 

was randomly created. 

 

Due to a large search space, we adopted the parallel computing in order to improve the 

running performance of ABC. The algorithm was run on the 12-core computers with 32 

GB-memory. The number of bees in a colony was 3600 in total (1200 for each type of 

bees). The un-improvement and termination thresholds were set to 10 and 10000, 

respectively. When the number of iterations reaches the termination threshold, the 

algorithm will stop and the best-so-far runtime prediction equation will be obtained.  In 

other words, the algorithm runs until the solution no longer improve for 10 iterations or 

when the iteration of 10,000 is reached. 

 

Because ABC applies a heuristic method to search for a good enough solution in limited 

time, the best solutions from ABC may not be the same every time even for the same 

training data. In our work, we ran ABC 5 times on each data set and selected the 

runtime equation with the highest R-squared. 

 

The runtime prediction models and R-squared values for each dwarf are presented 

below. There were three equations for each dwarf class for predicting the runtime of the 

application on the different machines in Amazon EC2. The obtained runtime is in 

second. The machines were General purpose, Compute optimized, and Memory 

optimized instance (see Table 3.5 for more details). The notations used in the equations 

are shown in Table 3.6 (the Possible Values column). 

 

dense  

 General purpose machine 

 R-squared: 99.6% 

 

runtime = 1.97 × 10
8
 + 0.508 sqrt(M) + 96277331 G - 3020 ln(F) 

+ 20268 E + 2923 ln(J) - 434 sqrt(L) + 1.13 L + 9457 ln(L) 

 + 136290 sqrt(F) - 2.93E+08 sqrt(G) + 55353417 ln(G) (3.15) 

 

 Compute optimized machine 

 R-squared: 99.4% 

 

runtime = - 42746086 + 2500 ln(J) + 0.198 L + 0.435 sqrt(M) 

+ 9974 sqrt(H) - 25.7 sqrt(L) - 86 ln(D) - 12876458 ln(G) 

 - 64697 sqrt(J) - 17687534 G+ 2.21 sqrt(C) + 60421185 sqrt(G) (3.16) 
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 Memory optimized machine 

 R-squared: 99.4% 

 

runtime = 1.30 × 10
8
 + 0.312 sqrt(M) + 62857250 G - 1365 ln(F) + 

10739 E + 1604 ln(J) - 191 sqrt(L) + 0.450 L + 4805 ln(L) 

 + 70132 sqrt(F) - 1.92 × 10
8
 sqrt(G) + 36668888 ln(G) (3.17) 

 

 

sparse 

 General purpose machine 

 R-squared: 99.8% 

 

runtime = - 27 - 17918 power(E,3) + 165 ln(M) - 14458 log(E) 

- 119 ln(D) + 29.9 ln(J)  + 188741 F + 28.2 sqrt(D) 

 + 19914 sqrt(H) - 7706 ln(J) - 3692 power(G,3) - 220419 H (3.18) 

 

 Compute optimized machine 

 R-squared: 99.8% 

 

runtime = - 73.0 - 268 ln(M) - 45881 sqrt(I) - 161025 G 

+ 3.35 sqrt(M) + 244232 K + 3107 F  + 2.56 ln(H)  - 87542 power(K,3) 

 + 118456 ln(G) - 312 log(F) - 272 power(E,3) (3.19) 

 

 Memory optimized machine 

 R-squared: 99.8% 

 

runtime = 18.6 + 2.93 sqrt(M) - 94.1 ln(M) + 42939 sqrt(I) 

- 11629 H  - 44.8 ln(L) + 100 ln(A) - 207 B + 206 A 

 + 0.271 log(J) + 528 sqrt(K) + 9.81 log(I) (3.19) 

 

 

spectral 

 General purpose machine 

 R-squared: 95.9% 

 

runtime = 1824 + 0.0389 sqrt(M) + 1 sqrt(A) - 574 log(L) 

- 74 ln(A) + 0.0288 L - 0.02 A - 3288 ln(G) - 42.0 ln(D) 

 - 14 log(H) - 78252160 I - 10.7 ln(M) (3.20) 

 

 Compute optimized machine 

 R-squared: 96.6% 

 

runtime = 6793 + 0.0251 sqrt(M) + 53 sqrt(A) + 25755716 I 

- 355 ln(L) - 9.21 ln(M) + 2381152 ln(B) - 2677 G 

 - 2381678 ln(A) - 0.31 A + 7.28 sqrt(L) + 21.8 log(D) (3.21) 
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 Memory optimized machine 

 R-squared: 85.4% 

 

runtime = - 14439 + 1.05E+08 I - 53690 ln(G) + 20.6 ln(D) 

+ 3.95 ln(M) + 10.1 sqrt(A) + 60236 K + 67571 G 

 - 112010 sqrt(K) + 0.000044 C - 14.1 ln(L) - 17.9 ln(C) (3.22) 

 

 

nbody 

 General purpose machine 

 R-squared: 96.6% 

 

runtime = - 46 + 0.000090 M + 0.000000 power(C,2) 

- 2.4 power(A,2) - 0.0144 C + 2.4 power(B,2) + 0.0564 power(D,2) 

 - 0.000002 power(L,2) + 0.138 sqrt(M) + 0.115 L (3.23) 

 

 Compute optimized machine 

 R-squared: 94.3% 

 

runtime = - 54 + 0.000085 M + 0.00172 power(A,3) + 0.00601 C 

 - 0.307 A + 0.0757 L - 0.00172 power(B,3) + 0.000282 power(D,3) (3.24) 

 Memory optimized machine 

 R-squared: 82.6% 

 

runtime = - 8279 + 1.71 sqrt(M) + 16812 E - 1736 ln(M) 

+ 3086400 ln(K) + 7.84 sqrt(C) - 7403 ln(F) - 738107 sqrt(H) 

 - 70443 sqrt(G) - 0.809 L + 1331254 sqrt(F) + 318 ln(L) (3.25) 

 

 

sgrid 

 General purpose machine 

 R-squared: 97.8% 

 

runtime = 30774 + 139 sqrt(M) + 1057953 ln(A) + 11395232 B 

- 245502 ln(E) - 6030218 sqrt(K) + 104301 ln(L) - 11396367 A 

 + 16.9 L - 35676 sqrt(D) - 7951 sqrt(L) - 4755113 sqrt(I) (3.26) 

 

 Compute optimized machine 

 R-squared: 99.1% 

 

runtime = 158662 + 29.5 sqrt(M) - 262379 ln(A) + 120580 sqrt(A) 

+ 4735 ln(M) - 1725995 sqrt(J) + 53564046 I - 25.8 sqrt(C) 

 - 418 ln(H) + 234221 F - 60054 ln(D) - 1651 B (3.27) 
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 Memory optimized machine 

 R-squared: 97.6% 

 

runtime = - 354821 + 38.0 sqrt(M) - 3035229 A - 740690 K 

- 8732 sqrt(D) - 436570 sqrt(J) + 189079 ln(A) + 3035031 B 

 - 64082 ln(E) + 4.05 L - 1913 sqrt(L) + 56561 log(L) (3.28) 

 

 

mapred 

 General purpose machine 

 R-squared: 99.7% 

 

runtime = 306958 + 0.219 M - 230720 K - 15491 ln(D) + 67.7 sqrt(L) 

 - 36 sqrt(C)  - 3244 ln(L) - 740 log(C) + 3.30 C - 1078 log(M) + 15.4 B (3.29) 

 

 Compute optimized machine 

 R-squared: 99.1% 

 

runtime = - 580 - 207 sqrt(M) + 0.00316 power(A,2) + 7.63 C 

+ 1761 ln(M) - 108 D - 197 sqrt(C) + 1.11 M - 0.000802 power(C,2) 

 + 702 log(L) + 204 log(F) + 19.5 ln(J) (3.30) 

 Memory optimized machine 

 R-squared: 99.8% 

 

runtime = 338 - 23.1 sqrt(M) + 0.0253 C + 0.174 M - 0.0444 L 

+ 20.1 sqrt(L) + 0.175 A - 1746 log(G) + 93.0 ln(M) - 542 log(L) 

 - 37.4 log(I) + 35.1 log(J) (3.31) 

 

 

 

grapht 

 General purpose machine 

 R-squared: 92.4% 

 

runtime = 1395 - 0.000075 C + 0.203 sqrt(C) + 211 sqrt(F) - 84.1 sqrt(B) 

 + 1.07 B + 41 G - 89 log(H) - 0.85 sqrt(L) + 0.00000043 M (3.32) 

 

 Compute optimized machine 

 R-squared: 91.6% 

 

runtime = 993 + 0.000000 M - 0.32 sqrt(A) - 747 F - 456 K 

 + 0.155 sqrt(C) - 24 log(F) - 3251 H - 681 sqrt(E) - 0.000050 C (3.33) 

 

 Memory optimized machine 

 R-squared: 94.8% 

 

runtime = 11010 - 0.00675 sqrt(M) + 12744 log(K) 

- 1033333 I - 0.0020 L - 11029 sqrt(K) + 0.96 ln(M) 

 - 0.000004 C + 0.130 sqrt(C) + 0.00000038 M + 99 sqrt(F) (3.34) 
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Figure 3.6 Percentage of R-squared Values of Dwarfs on Virtual Machines 

The runtime estimation equations that obtained from ABC have high R-squared values 

as shown in Figure 3.6. R-squared values of almost all equations are higher than 90%. 

The runtime estimation equations obtained from ABC have high R-squared values as 

shown in Figure 3.6. R-squared values of almost all equations are higher than 90%. This 

implies that ABC could efficiently find the model that could describe the relationship 

between the inputs and a runtime of the workload in linear time.  

 

In addition to methods mentioned in this section, the obtained runtime equations from 

ABC can be further improved by determining the correlations between variables and 

runtimes. Since ABC is a heuristic approach, some attributes might not be significantly 

correlated to the runtimes.  Thus, removing the irrelevant attributes may improve the 

qualities of the models, and it would ensure that all attributes in the equations were 

significantly correlated to the runtimes. The simplest way to remove the uncorrelated 

attributes from the model is to try removing the attributes one by one and then 

recalculate R-squared. If new R-squared is better than the old one, the removed attribute 

might be insignificant to the model. Another approach is to calculate correlation 

measures between attributes and runtimes, and remove the attributes that are deemed as 

unimportant. 

 

Furthermore, if new data records were added to the data set, ABC could compute a new 

model by adopting an original equation as the best so far solution and a seed solution. 

This method can significantly improve the performance of ABC since it does not have 

to start from the scratch. The experiments on the runtime prediction equations will be 

provided in chapter 4. 

 

Although all runtime estimation models can achieve very high R-squared values, there 

is a limitation in our models. Our models might not be efficient to predict runtimes of 

applications that fit behaviors of multiple dwarfs because the applications that are used 

to train the models are single-patterned applications. To solve this problem, dwarf 

classes with mixed behaviors have to be added. For instance, workload classes should 

include the classes that represent the combinations of existing dwarf classes (for 

example, dense & sparse class, dense & grapht class, and so on).   

 

In this section, we have presented the methodology to estimate the runtimes of the 

applications. Our framework is divided into 3 parts: profile colleting, workload 
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classification, and runtime prediction. The profile collecting used MICA and Perf to 

record the profile of the process. The profile, which is a set of attributes that represent 

the characteristic of the application, is an input of the classification and prediction 

models. After the profile collecting process was done, the profile was entered into the 

workload classification model to identify the class of the application. The partition of 

classes was based on the Berkley's Dwarfs classification. Once the class was known, the 

runtime prediction model for the application on the specific computer could be selected. 

The profile of the application was also used as the input of the runtime estimation 

model. The outcome from the model is a predicted runtime of the application. 

 



 

CHAPTER 4  EXPERIMENTS AND RESULTS 
 

This section gives the details on the experiments and results of our proposed 

framework. The experiments were divided into two parts. The difference between the 

two experiments was the benchmarks used in testing. One experiment adopted trained 

benchmarks, while the other used untrained benchmarks.  

 

The experimental procedure for the two experiments followed the methodology that 

was presented in chapter 3. At the beginning, the profile of a benchmark was sampled 

by running it on the master computer for a short period (see the details of the master 

computer in section 3.1). The profile was collected by MICA and Perf tool. Profile 

collecting took only a minute because it was the lowest runtime in the training data. In 

the next step, the runtime prediction model was selected. To choose an appropriate 

runtime equation, the benchmark was classified into a dwarf class. At the final step, the 

runtime of the workload was estimated.  

 

The predicted runtimes of the applications were compared to the actual runtimes on the 

virtual machines of Amazon EC2. The virtual machines that we used in the experiment 

were the General purpose, Compute optimized, and Memory optimized instances (see 

Table 3.5 for more details). Although both experiments had the same testing steps, the 

presented results and the discussions were different.  

 

In the following sections, we will henceforth call a sample of a profile of the benchmark 

as a 'sample data' or a 'sample profile'. The sample data was a set of MICA and Perf 

metrics that were collected in 1 minute-interval. The full-length run profile will be 

called a 'full-run data' or a 'full-run profile'. It is a profile that was collected from the 

beginning until the end of the execution.  

 

  Experiment on Trained Benchmarks 4.1
The purpose of this experiment was to verify that the sample data could be used instead 

of the full-run data. In the models construction phase, we trained the models by using 

the full-run data. However, we used the sample profile in the experiments. Therefore, 

we needed to ensure that the sample data would give the accurate runtime prediction 

results as the full-run data.  

 

In the experiment, two types of benchmarks, type A and type B, were selected from 

each dwarf. The two benchmarks were the same application, but had different input 

sizes. Type A and type B represented a small input size and a large input size, 

respectively. Table 4.1 shows the actual runtimes of the selected benchmarks. In the 

discussion, the actual runtimes will be compared to the predicted runtimes.  

 

 

Table 4.1 Actual Runtimes of Trained Benchmarks 

Dwarf: 

Benchmark 
Type 

Actual Runtime (second) 

General  

Purpose 

Compute 

Optimized 

Memory 

Optimized 

dense: 

nn 

A 3081 2492 1822 

B 15841 7572 5822 

sparse: 

cg 

A 233 159 140 

B 694 438 388 
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Dwarf: 

Benchmark 
Type 

Actual Runtime (second) 

General  

Purpose 

Compute 

Optimized 

Memory 

Optimized 

spectral: 

spectral 

A 111 74 73 

B 286 186 177 

nbody: 

nbody2d 

A 894 785 592 

B 11291 9348 7020 

sgrid: 

particle 

A 2168 580 883 

B 96305 14174 26326 

mapred: 

monteCarlo 

A 3067 2022 1193 

B 12133 12457 2292 

grapht: 

quickSort 

A 370 245 219 

B 708 507 432 

 

Before using the sample profiles for predicting the runtime of the benchmarks, we 

plotted the Kiviat diagrams to determine the similarity between the sample and the full-

run data. The values plotted in the graphs are normalized as the Z-scores, equation (3.1). 

For each graph, the red polygon and the blue polygon represent the plot of a sample 

profile and a full-run profile, respectively. The diagrams are shown in Figure 4.1. 

 

 
a) nn A 

 
b) nn B 

 
c) cg A 

 
d) cg B 

 
e) spectral A 

 
f) spectral B 

Figure 4.1 Kiviat Diagrams of Sample and Full-length Run Data 
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g) nbody2d A 

 
h) nbody2d B 

 
i) particle A 

 
j) particle B 

 
k) monteCarlo A 

 
l) monteCarlo B 

 
m) quickSort A 

 
n) quickSort B 

A: cpu_clock 

B: task_clock 

C: page_fault 
D: context_switch 

E: arith_cnt 

F: PAg_mispred 

G: reg_age_cnt_16 

H: data_stream 

I: mem_read_local_stride_8 

J: mem_read_global_stride_8 

K: mem_write_local_stride_8 

L: mem_write_local_stride_4096 

M: input_size 

Figure 4.1 Kiviat Diagrams of Sample and Full-run Data 

For each diagram in Figure 4.1, the red line (which represents a sample data) almost 

conceals the blue line (which represents a full-run data). This is apparent that the 

sample data and the full-run data were approximately the same. Therefore, the sample 

data can be used to represent the full-run data. Furthermore, we believe that this 

conclusion can be applied to other benchmarks as well. 

 

The discussion of the experiment is divided into two parts: the workload classification 

and the runtime prediction. 

 

4.1.1  Discussion on Workload Classification  

The sample data was entered to the workload classification model. The correctness of 

the classification is shown in Table 4.2. 
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Table 4.2 Classification Results of Trained Benchmarks 

Benchmark Dwarf Classified As 

nn A dense 

 

dense 

nn B dense 

cg A sparse 

 
sgrid 

cg B sparse 

spectral A spectral spectral 

spectral B spectral 

nbody2d A nbody 

 

nbody 

nbody2d B nbody 

particle A sgrid 

 

sgrid 

particle B sgrid 

monteCarlo A mapred 

 

mapred 

monteCarlo B mapred 

quickSort A grapht 

 

grapht 

quickSort B grapht 

 

All benchmarks, except cg A, were correctly classified into classes. We also 

investigated the error in cg A classification. As shown in Table 4.2, cg A was 

categorized into sgrid. We noticed that the sample data of cg A contained one metric 

that was irregular. The value of the mem_write_local_stride_4096 metric was higher 

than the mean value, which could cause an error in classification. However, in the next 

step, we used both sparse and sgrid runtime prediction models for cg A.  

 

4.1.2  Discussion on Runtime Prediction 

The sample data was also used in runtime prediction. The model for each workload was 

selected based on the classification results in the previous step. However, a runtime of 

the cg A application was predicted by two models: sparse and sgrid. The prediction 

results are presented in Table 4.3. Moreover, the comparisons between the prediction 

results and the actual runtime for general purpose, compute optimized, and memory 

optimized virtual machines are visualized in Figure 4.2, Figure 4.4, and Figure 4.4, 

respectively. 

 

Table 4.3 Runtime Prediction Results for Trained Benchmark 

Benchmark 

General  

Purpose 

Compute  

Optimized 

Memory  

Optimized 

Predicted 

Runtime 

(s) 

Error 

(%) 

Predicted 

Runtime 

(s) 

Error 

(%) 

Predicted 

Runtime 

(s) 

Error 

(%) 

nn A 3501.94 13.67 3168.96 27.17 2131.8 17 

nn B 15559.81 1.76 7068.03 6.66 5801 0.36 

cg A 

sparse model 

253.31 8.71 208.30 31 145.23 3.73 

cg A 

sgrid model 

5270.46 > 100 27971.21 > 100 5317.04 > 100 

cg B 758.16 9.4 495.68 13.17 384.03 0.77 

spectral A 101.8 8.29 98.92 33.67 85.18 16.69 

spectral B 278.73 2.54 196.87 5.84 203.66 15.06 
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Benchmark 

General  

Purpose 

Compute  

Optimized 

Memory  

Optimized 

Predicted 

Runtime 

(s) 

Error 

(%) 

Predicted 

Runtime 

(s) 

Error 

(%) 

Predicted 

Runtime 

(s) 

Error 

(%) 

nbody2d A 1062.31 18.83 839.31 6.91 800.23 35.17 

nbody2d B 12557.56 11.22 9528.01 1.92 8293.39 18.14 

particle A 2477.22 14.26 701.06 20.87 801.73 9.20 

particle B 76925.63 20.12 16133.74 13.82 18765.20 28.72 

monteCarlo A 3333.45 8.69 2517.61 24.51 1173.10 1.67 

monteCarlo B 9420.92 22.35 8729.66 29.92 2210.49 3.56 

quickSort A 444.88 20.24 296.08 20.85 296.76 35.51 

quickSort B 500.41 29.32 349.24 31.12 366.34 15.19 

 

 

 

Figure 4.2 Runtimes of Trained Benchmarks in Percent for General Purpose Machine 
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Figure 4.3 Runtimes of Trained Benchmarks in Percent for Compute Optimized 

Machine 

 

Figure 4.4 Runtimes of Trained Benchmarks in Percent for Memory Optimized 

Machine 
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From the experimental results, the maximum and minimum errors for the runtime 

prediction were 0.36% and 35.51%, respectively. The overall results were acceptable, 

however; we examined the causes of the errors that higher than 30%. There were three 

benchmarks that obtained high runtime prediction error: spectral A, nbody2d A, and 

quickSort A.  

 

From the investigation, the runtime prediction models for the three benchmarks could 

yield the highly satisfactory estimation results for the benchmarks with a longer running 

period. In the model-training step, the number of data records that contained long-

runtime was significantly more than those with short-runtime because our framework 

was proposed for the HPC applications, which generally have a long execution time. 

Therefore, the models might be more appropriate for predicting the runtime of the HPC 

applications with high execution time. 

 

Moreover, for the runtimes of cg A that was predicted by the sgrid model were 

completely incorrect. This might imply that our framework was sensitive to the outliner. 

In order to improve the strength of classification and runtime prediction models, more 

data are needed in the training step. 

 

  Experiment on Untrained Benchmarks 4.2
This experiment aimed to verify the practicality of our framework. We would verify 

that our framework could be used to accurately predict the runtime of untrained 

applications. Five distinct untrained applications, from three benchmark suites, were 

adopted in the experiment. The benchmark suites were BioInfoMark [29], Galois [30], 

and LAPACK [31]. These benchmarks have been frequently used in the experiments of 

many researches [13][32][33].  

 

BioInfoMark is a benchmark suite that contains bioinformatics applications. It has been 

developed by the IDEAL lab at the University of Florida. In our experiment, only three 

applications, which are clustalw, glimmer, and predator, were employed. 

 

Galois is a framework for executing the serial C++ application on the shared memory 

machines. It is a work of the University of Texus at Austin. We adopted one of the 

applications in the Galois suite in our experiment, which is nbody. 

 

LAPACK is a short name of Linear Algebra PACKage. It is a well-known library 

written in Fortran 90 for solving linear algebra system. It is provided by the University 

of Tennessee; the University of California, Berkeley; the University of Colorado 

Denver; and NAG Ltd. We implemented one dense linear algebra application from the 

LAPACK library. It performs lower-upper matrix factorization. We will call this 

application 'lu'. 

 

Notice that the selected benchmarks are representative of popular scientific 

applications.  

 

In order to utilize the benchmarks in our experiment, we complied each benchmark by 

using gcc-4.4 on Ubuntu 12.04. The sample profiles of the benchmarks were collected 

on the master computer (see Table 3.5 for more details). The actual runtimes were 

measured by running the benchmarks on 3 types of virtual machines on the cloud: 

General purpose, Compute optimized, and Memory optimized. For each actual runtime, 
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we calculated it from the average runtime of three replicated runs. The summarized 

details of the benchmarks and the actual runtimes are shown in Table 4.4. 

Table 4.4 Actual Runtimes of Untrained Benchmarks 

Benchmark Suite Actual Runtime (second) 

General 

Purpose 

Compute 

Optimized 

Memory 

Optimized 

clustalw BioInfoMark 200 152 121 

glimmer 211 158 127 

predator 269 202 161 

nbody Galois 3132 2225 1734 

lu LAPACK 23357 16647 10959 

 

Similar to the previous experiment, the sample profiles (MICA and Perf metrics) of the 

benchmarks were used in workload classification and runtime prediction. The 

classification and runtime prediction results are shown in Table 4.5. The bar graphs that 

compare the predicted runtimes against the actual runtimes are shown in Figure 4.5, 

Figure 4.6, and Figure 4.7. 

 

Table 4.5 Runtime Prediction Results for Untrained Benchmarks 

Benchmark: 

Class 

General Purpose Compute Optimized Memory Optimized 

Predicted 

Runtime 

(s) 

Error 

(%) 

Predicted 

Runtime 

(s) 

Error 

(%) 

Predicted 

Runtime 

(s) 

Error 

(%) 

clustalw: 

dense 

231.49 15.74 201.54 32.59 177 46.26 

glimmer: 

dense 

286.61 35.83 224.89 42.33 114.07 10.18 

predator: 

sparse 

217.87 19.01 126 37.49 142.63 11.41 

nbody: 

nbody 

2764.49 11.73 1610.69 27.61 1509.01 12.98 

lu: 

dense 

23362.96 0.02 18183.42 9.23 11700.13 6.47 

 

 
Figure 4.5 Runtimes of Untrained Benchmarks in Percent for General Purpose Machine 
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Figure 4.6 Runtimes of Untrained Benchmarks in Percent for Compute Optimized 

Machine 

 

Figure 4.7 Runtimes of Untrained Benchmarks in Percent for Memory Optimized 

Machine 

From Table 4.5, all the errors of runtime prediction for the benchmarks in the Galois 

and LAPACK suites were lower than 30%. Moreover, almost all predicted runtimes for 

nbody and lu were highly accurate with the highest error of 13%. Evidence to support 

the experimental results was the similar applications, which were nbody2d, lu (A, B, C, 

S), and lud, that were used to train the models in the models construction phase. 

 

For the remaining benchmarks in the BioInfoMark suite, the prediction results were not 

as good as expected. Most of the errors were higher than 30%. After inspecting the 

flaws in our models, we found that there were not sufficient similar benchmarks trained 

in our framework. One of the runtime prediction approaches [34] obtained the runtime 

estimation errors between 35% and 70%. They observed that the poor estimation results 

were caused by the insufficiency of the similar jobs in the historical data. In addition, as 

discussed in the previous experiment, the model might be more suitable for estimating 

the runtimes of workloads that have longer execution times. 

 

Our average runtimes for General purpose, Compute optimized and Memory optimized 

virtual machines were 16.46%, 29.85%, and 17.46%, respectively. From a similar piece 

of research [7], they reported that the average runtime estimation errors of their 
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approach were approximately 45%, and the framework could significantly improve the 

overall performance of grid. Therefore, the error percentages in our runtime prediction 

would be acceptable. As a result, the predicted runtimes are accurate enough to allow 

the scheduler to be more efficient.  

 

In conclusion, our framework can be used for predicting the runtime of the workloads 

that have similar execution pattern or characteristic with the trained workloads. 

Therefore, the decision tree and the models that are presented in this work can only be 

used for the specific group of applications, which includes the applications that have the 

similar data transfer and execution patterns as the 7 Berkley's Dwarfs (dense, sparse, 

spectral, nbody, sgrid, mapred, and grapht). However, our methodology is apparently 

better than the user-estimated approach because the runtimes given by users always 

yield more than 50% error [4]. 

 

To improve the practicality of the models, they are required to be trained extensively. 

More data records, for wide range of applications, are needed to be imported to the 

models. 

 

In order to verify the practicality of our framework, the details on the adoption of our 

approach in the ALICE O2 project at CERN will be presented in the section. The 

traning applications as well as the testing benchmarks will be the real programs used in 

the ALICE experiment. 



 

CHAPTER 5  THE ADOPTION OF RUNTIME PREDICTION 

FRAMEWORK IN ALICE O2 PROJECT  
 

Through the collaboration between the Computer Department at King Mongkut's 

University of Technology Thonburi (KMUTT) and the ALICE's Computer Working 

Group at The European Council for Nuclear Research, or CERN, we were able to apply 

our framework to predict the runtime of real scientific applications from the ALICE 

experiment. This section provides details of the adoption of our runtime prediction 

framework, which is a part of the ALICE O2's scheduler. ALICE stands for A Large Ion 

Collider Experiment. It is one of 4 detectors of a Large Hadron Collider (LHC) at 

CERN. ALICE’s main mission is to study about the highly interacting matters and the 

quark-gluon plasma. ALICE O2 is a project of the computer working group under the 

ALICE experiment. In fact, ALICE O2 is divided into several subgroups. Our study 

involved in only the data acquisition group (DAQ), responsible for receiving the 

collision events from the detectors and storing them in storages for further processing. 

In order to handle big data, several ten applications were used in ALICE's computer 

system. 

 

In the year 2018, the ALICE detectors will be upgraded and the amount of data that will 

be produced from the detectors will be higher. The data throughput will be 

approximately 1 TB per second. For this reason, the whole ALICE's system has to be 

developed. The data flow of the ALICE experiment is shown in Figure 5.1. 

 

 

Figure 5.1 Data Flow of ALICE 

The constraint of the new ALICE experiments is the system should be able to handle a 

large amount of particles collision events that will be produced from detectors. The data 

acquisition comprises two computer clusters – First Level Processors (FLP) and Even 

Processing Nodes (EPN). The two clusters serve different purposes. The FLP cluster is 

responsible for controlling the data rate to not exceed 80 GB/s peak and 20 GB/s 

average because the data have to be streamed to a permanent storage. Then, the data 

will be sent through the network to EPNs for further processing, for example, event 

reconstruction.  

 

The mission of the ALICE O2 project is to select the suitable computing platforms, both 

FLPs and EPNs, by optimizing the size and cost of an online farm. Various platforms 

have been tested out using the benchmark algorithm called 'Pixel Cluster Finder'. 

Moreover, the scheduler between the two clusters is required in order to efficiently 

propagate jobs and data from FLPs to EPNs. The scheduler is placed in the network 

between FLPs and EPNs as illustrated in Figure 5.2. 
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Figure 5.2 The Position of Scheduler 

In order to schedule jobs from FLPs to EPNs, two challenges arise: 

1. The scheduler should be able to accurately calculate the runtime of jobs on 

different computers because this information will be used in scheduling process. 

2. The scheduler should work fast and efficiently because the delay due to the jobs 

scheduling may cause severe processing bottleneck, and provoke side effects 

like increasing the buffer space needed on FLPs. 

 

Our framework was adopted to satisfy the first challenge mentioned above. The runtime 

estimation process was integrated to the scheduler to predict runtimes of the 

applications in the system. The estimated runtime would be used further in the 

scheduling process.  

 

In this work, complexity analysis was also used in order to find an appropriate runtime 

estimation equation. It can be used directly only in the case that a source code of the 

application is provided. An application with source code will be henceforth called a 

'white-box' application. Notice that the complexity analysis has to be done by hand. In 

addition, a runtime equation for each application has to be constructed separately using 

linear regression. In this approach, a runtime prediction equation represents a 

relationship between inputs and a runtime, for example, runtime = f(xi) where xi is an 

input parameter. Moreover, it requires input parameters to calculate the application's 

runtime. A method to build a runtime prediction equation using this approach will be 

presented in the next subsection. 

 

In a black-box application, the runtime estimation equations are determined by using 

the method that was presented in Chapter 3. In order to estimate the runtime of an 

application, the profile of the application will be sampling for a certain period by using 

MICA and Perf tools. After that, it will be categorized into a dwarf class, and the 

classification results will be used to select the runtime prediction model. In the final 

step, the runtime in second unit will be computed by using the sample profile as the 

input of the runtime estimation model.   

 

The following subsection presents the initial experiment and the results from the 

adoption of our runtime estimation framework in the ALICE O2 project. The 

experiments were divided into two parts: the experiment on white-box applications 

adopting a complexity analysis and linear regression to create runtime equations and the 

experiment on black-box applications employing a workload classification, ABC and 

linear regression to construct runtime prediction models. 
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  Initial Experiment and Result for White-Box Applications 5.1
In this section, we applied the complexity analysis technique in collaboration with 

linear regression to determine the runtime prediction model for specific applications 

with a source code. This method was a contribution from our previous work [35]. The 

method for constructing the runtime prediction equation is shown in Figure 5.3. 

 

 

 
 

Figure 5.3 Runtime Estimation Model Construction for Known-Source Code 

Application 

In order to build the runtime estimation model for a white-box application, a complexity 

of the algorithm has to be determined. Application's complexity is a mathematical 

equation that represents a relationship between input attributes and runtime of the 

application: runtime = F(x1, x2, x3, ..., xn) where xi is an input attribute. After the model 

is obtained, an empirical experiment is run in order to get the data records to fit the 

model. Then, the model is fitted with the collected data by using linear regression, and 

coefficients will be obtained as an output. 

 

In this experiment, we adopted TPC laser events program, with a known source code. 

According to the method described above, the complexity of the algorithm is 

determined, and the result is shown in equation (5.1). 

 

 R = β1S + β0  (5.1) 

 

 where R is an estimated runtime 

  S is an input size in megabyte (Mb) 

  β is coefficient of each variable and i is number of variable 

 

Then, we ran TPC laser events by adjusting input sizes in order to get 500 different 

runtime values. Notice that the runtime of each input size was an average of 5 replicated 

runs. The experiment was run on the Scientific Linux CERN 6 (SLC6) operating 

system. The computer used in the experiment had 1 Intel Core i5-4570 CPU @ 

3.20GHz, 8 GB memory, and 1 TB storage.  

 

After fitting the model using linear regression, we obtained a complete model as shown 

in equation 5.2. 

 

 R = 0.0713S + 4.93  (5.2) 

 

The quality of the regression model was measured by R-squared. This model obtains 

99% R-squared, which is as high as expected. We plotted a graph between input size 

and actual runtime, as shown in Figure 5.4, and we found that they are linearly 

correlated. Therefore, it is not surprising that our runtime prediction model, equation 

5.1, could achieve a high R-squared value. 

Determine 

Complexity 

Compute 

Coefficients using 

Linear Regression 

Estimated 

Runtime 

Application with 

source code 
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Figure 5.4 Linear Relationship between Input and Runtime  

In order to test the accuracy of the model, we ran the application with the different 

input sizes as shown in Table 5.1. Notice that the input sizes from 100 Mb to 500 Mb 

were used in model training, while the rest were not. 

 

Table 5.1 Results from Running TPC Laser Events with Different Input Sizes 

Input Size (Mb) Predicted Runtime 

(s) 

Actual Runtime (s) Error (%) 

100 12.06 11.93 1.09 

200 19.19 18.79 2.13 

300 26.32 25.79 2.06 

400 33.45 36.22 7.65 

500 40.58 39.95 1.58 

600 47.71 46.95 1.62 

700 54.84 54.06 1.44 

800 61.97 62.23 0.42 

 

Given the input size, our mathematical model can accurately predict the runtime of 

application with less than 10% error. Even for untrained data, the runtimes can be 

predicted with high accuracy. To sum up, this model can be used for calculating the 

runtime of the TPC laser events application for both trained and untrained data.  

 

  Initial Experiment and Result for Black-Box Applications 5.2
This experiment used the black-box applications, source code not being provided; 

therefore, the method that was presented in chapter 3 was applied. In order to predict a 

runtime of an application, the workload classification model and the runtime estimation 

equations are required. However, we could not use the same models (as shown in 

chapter 3) because the operating systems and hardware of the machines were different. 

In this experiment, the machine contained 8-core Intel Core i7-2600 CPU, 8-GB 

memory, and 470 GB of storage, and it ran the SLC6 operating system. Thus, we 

needed to construct new workload classification model and runtime estimation 

equations. 

 

To train the models, we collected the profiles of the benchmarks (shown in Table 3.4) 

by using MICA and Perf tools on a master machine. Notice that the master machine had 
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the same specification as the machine that used in the experiment. A profile of each 

benchmark was collected from the beginning to the end of the execution (full-run 

profile). For each class of dwarf, we collected 15 profiles where each profile contained 

12 metrics. We then obtained 105 profiles of benchmarks to train the models. 

 

For the workload classification model, we applied C4.5 to the training data in order to 

build a decision tree. As mentioned in section 3.1, the input attributes for the algorithm 

were only 8 MICA metrics. The rules derived from the decision trees are as follows: 

 

Rules for dense 

(B ≤ 0.00395 ^ E ≤ 0.994573 ^ H ≤ 0.000786 ^ A ≤ 0.663777) ˅ 

(B ≤ 0.00395 ^ E > 0.994573 ^ A ≤ 0.712571 ^ A > 0.606547 ^ H > 0.00002) 

 

Rule for sparse 

(B ≤ 0.00395 ^ E ≤ 0.994573 ^ H ≤ 0.000786 ^ A > 0.663777) ˅ 

(B > 0.00395 ^ C > 0.536309 ^ A > 0.635292 ^ F ≤ 0.000025 ^ A > 0.769438 ^ A ≤ 

0.781248) ˅ 

(B > 0.00395 ^ C > 0.536309 ^ A > 0.635292 ^ F > 0.000025) 

 

Rule for spectral 

(B ≤ 0.00395 ^ E ≤ 0.994573 ^ H > 0.000786) ˅ 

(B > 0.00395 ^ C ≤ 0.536309 ^ B ≤ 0.011211) 

 

Rule for nbody 

(B ≤ 0.00395 ^ E > 0.994573 ^ A > 0.712571 ^ B ≤ 0.00158 ^ C ≤ 0.603917) ˅ 

(B > 0.00395 ^ C > 0.536309 ^ A ≤ 0.635292) 

 

Rule for sgrid  

(B ≤ 0.00395 ^ E > 0.994573 ^ A ≤ 0.606547) ˅ 

(B ≤ 0.00395 ^ E > 0.994573 ^ A ≤ 0.712571 ^ A > 0.606547 ^ H ≤ 0.00002) ˅ 

(B ≤ 0.00395 ^ E > 0.994573 ^ A > 0.712571 ^ B > 0.00158) 

 

Rule for mapred 

(E > 0.994573 ^ A > 0.712571 ^ B ≤ 0.00158 ^ C > 0.603917) ˅ 

(B > 0.00395 ^ C ≤ 0.536309 ^ B > 0.011211) 

 

Rule for grapht 

(B > 0.00395 ^ C > 0.536309 ^ A > 0.635292 ^ F ≤ 0.000025 ^ A ≤ 0.769438) ˅ 

(B > 0.00395 ^ C > 0.536309 ^ F ≤ 0.000025 ^ A > 0.781248) 

 

Note: 

 A denotes reg_age_cnt_16 E denotes mem_write_local_stride_4096 

 B denotes PAg_mispred F denotes mem_write_local_stride_8 

 C denotes arith_cnt G denotes mem_write_global_stride_8 

 D denotes data_stream H denotes mem_read_loca_stride_8 
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With stratified 10-fold cross-validation, our model can achieve 81.14% accuracy. The 

rules derived from the decision tree were used to categorize applications into a specific 

class. 

 

In this experiment, TPC laser event program was used. To build a runtime prediction 

equation, we collected the profiles of the TPC laser event with various input sizes and 

used them to train the model. Notice that we did not build a model for every dwarf 

class. We constructed only a model for the class that the application belonged to. From 

the rules presented above, TPC laser event was categorized into dense. Therefore, only 

dense runtime prediction equation was constructed. We applied ABC and linear 

regression to training data and derived the runtime equation, which can yield 99% R-

squared, as shown in equation (5.3). Notice that notations used in the equation were 

referenced from Table 3.6. 

 

runtimedense = 14 + 0.254 sqrt(M) + 5075 G + 60311 I + 0.0441 C  

- 79824 K - 13.7 sqrt(A) + 153 log(K) - 11.1 sqrt(C)  

 - 7104 sqrt(I) - 1949 power(E, 2) - 146 ln(H) (5.3) 

 

We predicted runtimes of the TPC laser event application with different input sizes by 

using equation 5.3. The predictive runtimes are shown in Table 5.2 and Figure 5.5. 

 

Table 5.2 Runtime Prediction Results for Black-box Application 

Input Size 

(MB) 

Actual 

Runtime (s) 

Predicted 

Runtime (s) 

Error (%) Note 

977 80 64.15 19.82 Trained 

1500 116 142.02 22.43  

1954 152 150.85 9.56 Trained 

2000 154 168.72 0.76  

2500 193 243.45 26.14  

3000 229 281.17 22.78  

3500 266 261.51 1.69  

3909 296 315.03 6.43 Trained 

4000 354 451.84 27.64  

5000 431 504.88 17.14  

7819 590 574.36 2.65 Trained 

8796 691 626.01 9.41  
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Figure 5.5 Runtimes of TPC Laser Events in Percent 

From Table 5.2, the records that were marked 'Trained' were used in runtime equation 

training phase, while the rest were used only during the testing step. The overall 

runtime prediction results were accurate for both trained and untrained data. The 

prediction errors were approximately between 1% and 30%, which were acceptable.  

 

Apart from TPC laser event, we also validated our framework against another 

application, namely 'PHS'. We applied the methods for both white-box and black-box 

applications on the data. The experiment procedure followed the same method as the 

one for previous application. For the black-box approach, the application was 

categorized into the sparse class. From the experimental results, the average runtime 

prediction errors for white-box and black-box methods were 3.87% and 4.31%, 

respectively. Although the average errors were not significantly different from each 

other, the runtime prediction errors for black-box applications were slightly higher than 

another approach. Moreover, the highest prediction errors for both methods were 

smaller than 10%, which was highly satisfying. 

 

Both runtime estimation approaches presented in this chapter could be used effectively 

to predict runtimes of the applications of ALICE O2 project. In the case that source 

code is accessible, complexity analysis and linear regression would be applied to build a 

runtime estimation equation. This approach is more accurate than another method, but it 

requires hand calculation and a runtime equation is specific to the application and 

machine.  

 

Moreover, runtime of an application with unknown source code can be also predicted. 

In the experiment, we assumed that source code of TPC laser event was not provided. 

We used dwarf benchmarks (see Table 3.4 for more details) to train both workload 

classification model and runtime prediction equation. In addition to these benchmarks, a 

few TPC laser event's profiles with different input sizes were also used for runtime 
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estimation model training. The accuracy of this model was much less accurate than the 

method for white-box applications, however; it was still acceptable. Furthermore, it was 

more practical because a runtime prediction model was only dependent to a specific 

class rather than the application. Therefore, the number of required runtime prediction 

equation could be reduced substantially. 

 

To sum up, the method for white-box applications can predict a runtime with higher 

accuracy than the method for black-box applications. However, the source code must be 

provided, and a lot of manual processes are required. This method can fail easily when a 

new application is introduced to the system, which may seriously interrupt the system 

operation. In contrast, the runtime estimation method for black-box applications can 

predict the runtime of unknown applications automatically without having to train a 

new model. This property is important to a computer system that requires rapidity in job 

scheduling, like ALICE's system. Therefore, the runtime estimation framework for 

black-box applications is more efficient and more flexible when comes the real system. 



 

CHAPTER 6  CONCLUSION 
 

Cloud computing is a distributed environment platform that has received much attention 

during a past few years. Due to the characteristics of the cloud, the users are allowed to 

request the computer resources on demands, and the cloud will automatically allocate 

and de-allocate the resources upon on the requirement of the users. The resources in the 

cloud can be simply accessed via the Internet using the secure communication protocol, 

such as, secure shell (SSH) and remote desktop protocol (RDP). For the public cloud, 

the cost is usually calculated based on the extent of resources usage. 

 

Since the cloud can provide the users with flexible and excessive computer resources, it 

is suitable for executing the high performance computing tasks. However, it is difficult 

to efficiently run the HPC applications in the cloud because there are many issues that 

must be considered. One of the most important issues is the method to accurately 

estimate the runtimes of the applications in the cloud because the runtime is required by 

most scheduling algorithm, for example, Backfilling and Heterogeneous Earliest Finish 

Time (HEFT). Inaccurate runtime estimation can degrade the performance of the 

scheduler, which could lead to the deterioration of the execution performance.   

  

For this reason, we have presented the mechanism to estimate the runtimes of the 

applications with unknown-profile on the cloud. Similar to other runtime estimation 

approaches, our framework consists of two phases: workload classification and runtime 

prediction. However, the key attributes used in our framework are more informative 

than those of other works. We utilized 12 performance metrics, measured by MICA and 

Perf tools, rather than using a user name and a project name. MICA and Perf metrics 

can represent the real characteristics of the applications. These attributes were used in 

both workload classification and runtime prediction phases. 

 

The workload classification is the step to categorize an application of interest into a 

class that has similar execution behavior. The results from this step were used to choose 

the appropriate runtime prediction equation in the next step. The classes were specified 

based on the characteristic of the programs that were explained in Berkley's Dwarfs 

definition. There are 7 classes, dense, sparse, spectral, nbody, sgrid, mapred, and 

grapht, of which labels come from the names of dwarfs. In our work, we used a 

decision tree to classify the workloads. The input parameters of the decision tree were 8 

MICA metrics, and the output was the name of class that the workload belonged to. The 

decision tree could yield 96.89% percent accuracy on a stratified 10-fold cross-

validation.  

 

After the application was already classified, the classification results were used to select 

the proper runtime estimation equation because the applications in the different classes 

had separated equation for estimating the runtime. In addition, the runtime estimation 

equation was also specific to the type of virtual machines that application would be run 

on. As shown in chapter 3, there were 21 runtime prediction equations presented 

because we had 3 types of virtual machines (General purpose, Compute Optimized, and 

Memory Optimized instances) and each machine needed 7 equations. In our framework, 

we built the runtime equations by using ABC and linear regression to find the structure 

and the coefficients of each equation. The input variables of a runtime equation were 12 

performance metrics (MICA and Perf metrics) and the input size, which could be 

computed by the method presented in section 3.3.1. The output of the equation was a 
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predicted runtime. In order to measure the quality of the equations, R-squared was used. 

From the test, all equations could achieve high R-squared with at least 82.6%.  

 

In the experiments, we tested our framework against 2 objectives. First, we used the 

trained benchmarks to verify that the sample profile (which is the set of MICA and Perf 

metrics that are collected for 1 minute) could be used instead of the full-run profile (the 

metrics collected from the beginning to the end of the execution). Second, we adopted 

the untrained benchmarks in order to ensure that our framework could be also applied to 

the untrained data. The actual runtimes for both experiments were collected on 3 

instances of Amazon EC2: General purpose, Compute optimized, Memory optimized. 

 

For the experiment on the trained benchmarks, the runtime prediction accuracy for most 

benchmarks was higher than 64.49%. We investigated that our framework yielded quite 

high error percentages in some cases that the actual runtimes were small. This could be 

caused from the insufficient number of small runtime applications in the training data. 

However, we can conclude that the sample data can replace the full-run data effectively.  

 

In the untrained benchmarks experiment, we adopted the representative of the scientific 

applications from three benchmark suites that has been used widely in many researches: 

BioInfoMark, Galois, and LAPACK. The accuracy percentages of the benchmarks that 

had the similar characteristics to some benchmarks in the training data were high (less 

than 13% error). In contrast, the benchmarks that were not similar to the training 

benchmarks obtained high error percentages, which were between 31 and 47. This 

problem could be solved by adding similar jobs to the training data. However, the errors 

are acceptable since the presence of the higher error in the similar works could improve 

the execution performance significantly [7]. 

 

With our runtime prediction framework, runtimes of ALICE's applications can be 

accurately predicted. This would subsequently benefit to a task scheduler who requires 

application runtimes to determine a schedule of jobs. Since the system performance 

relies on the job scheduler, we believe that our method can improve the overall 

performance of ALICE's computer system. 

 

To sum up, our runtime estimation framework can be used efficiently to predict the 

runtime of the unknown application in the cloud computing environment. With our 

approach, the scheduler will be able to generate high quality job schedules. Moreover, 

this method is more efficient than the user estimation approach. For the future work, we 

will run more extensive empirical experiments to collect more training data so that we 

can improve the accuracy of the runtime prediction model. In addition, the scheduling 

framework on the cloud should be developed so that we can obtain an integrated system 

that can efficiently predict the runtime and schedule the workloads on the cloud. 
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