

บทคัดย่อ

แผนการศึกษาวิจัยเรื่อง “การพัฒนาองค์ความรู้เพื่อการจัดการปัญหาภาวะมลพิษในทะเลและอนุรักษ์ความหลากหลายทางชีวภาพบริเวณหมู่เกาะสีชัง (ปีที่ 2)” ประกอบด้วยการศึกษาวิจัยด้านการกระจายและแหล่งกำเนิดของโพลีไซคลิกอะโรมาติกไฮโดรคาร์บอนในดินตะกอนชายฝั่งบริเวณเกาะสีชัง และศิริราช จ.ชลบุรี และการศึกษาประสิทธิภาพในการย่อยสลายทางชีวภาพสารโพลีไซคลิกอะโรมาติกไฮโดรคาร์บอนโดยไลโพไอลิติกยีสต์และแบคทีเรียชนิดดินทริไฟเออร์

การศึกษาองค์ประกอบและแหล่งที่มาของ PAHs ในตะกอนดินจากทะเลชายฝั่งระหว่างศิริราช-เกาะสีชังด้วยเทคนิคแก๊สโกรามาโทกราฟ พบความเข้มข้นรวมของ PAHs 16 ชนิดอยู่ในช่วง 65.2-18,970 นาโนกรัมต่อกิโลกรัม น้ำหนักแห้ง ความเข้มข้นเฉลี่ย 282 นาโนกรัม/กรัม PAHs ที่มีจำนวนแหนวยานชีน 4-6 วง มีสัดส่วนสูงโดยเฉลี่ย 87% ของ PAHs รวม อัตราส่วนองค์ประกอบระหว่าง PAHs ที่ใช้บ่งชี้แหล่งกำเนิดพบว่าตะกอนดินบริเวณนี้ส่วนใหญ่มีแหล่งที่มาหลักจากการเผาไหม้ที่ไม่สมบูรณ์ การตรวจ PAHs หลายชนิดที่สามารถถกอิทธิพลของมันได้ในตะกอนในพื้นที่ศึกษา บ่งชี้ว่าตะกอนเหล่านี้เป็นตะกอนที่มีพิษต่อสิ่งแวดล้อม มีผลกระทบต่อระบบนิเวศทางทะเลและชายฝั่งและต่อสุขภาพของมนุษย์

การศึกษาการย่อยสลายทางชีวภาพของสารโพลีอะโรมาติกไฮโดรคาร์บอนด้วยแบคทีเรียที่ผลิตได้จากไลโพไอลิติกยีสต์สายพันธุ์ *Aureobasidium pullulans* var. *melanogenum* ที่คัดเลือกจากดินเกาะสีชัง พบว่า สามารถย่อยสลาย Naphthalene Anthracene Pyrene และ Benzo[a]pyrene ในสารละลายได้ 24.35, 38.16, 25.38 และ 45.33 เปอร์เซ็นต์ ตามลำดับ ภายในเวลา 24 ชั่วโมง สำหรับการย่อยสลายสารโพลีอะโรมาติกไฮโดรคาร์บอนในดินด้วยแบคทีเรียสายพันธุ์ พบว่าปริมาณ Naphthalene ลดลง 51.34 เปอร์เซ็นต์ และปริมาณ Anthracene ลดลง 85.06 เปอร์เซ็นต์ ตามลำดับ ภายในเวลา 9 วัน

การคัดแยกจุลินทรีย์ชนิดดินทริไฟเออร์จากดินตะกอนได้ทะเลบริเวณเกาะสีชังจำนวน 26 ตัวอย่าง พบว่าสามารถคัดแยกจุลินทรีย์จากตะกอนดินได้ทะเล 6 ไอโซเลตที่เป็นดินทริไฟอิงแบคทีเรียคือ *Enterococcus faecalis*, *Paenibacillus macerans*, *Bacillus subtilis*, *Bacillus tequilensis*, *Proteus mirabilis* และ *Enterobacter asburiae* และมีประสิทธิภาพการย่อยสลายสาร Naphthalene Phenanthrene Pyrene และ Benzo[a]pyrene ที่แตกต่างกัน ขึ้นอยู่กับดินทริไฟเออร์แต่ละชนิด

ข้อมูลต่างๆที่ได้รับจากการวิจัยครั้งนี้จะเป็นประโยชน์ในการนำมาใช้เป็นข้อมูลในการวางแผนบริหารจัดการสิ่งแวดล้อม กำหนดแนวทางการควบคุม และลดผลกระทบทางด้านลบต่อระบบนิเวศชายฝั่งบริเวณศิริราชและเกาะสีชัง จ.ชลบุรีต่อไป

คำสำคัญ: โพลีไซคลิกอะโรมาติกไฮโดรคาร์บอน ไลโพไอลิติกยีสต์ แบคทีเรียดินทริไฟอิงแบคทีเรีย การย่อยสลายทางชีวภาพ

Abstract

The project “Knowledge Management for Marine Pollution Abatement and Biodiversity Conservation around Sichang Islands (2nd Year)” consists of two parts. The first part involves the sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in coastal sediments of Koh Sichang and Siracha in Chonburi Province, while the second part deals with the ability of lipolytic yeast and denitrifying bacteria in biodegrading these PAHs compounds.

The characteristic distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) in surface sediment samples from Koh Sichang and Siracha coastal marine area was carried out by GC-FID. The results showed that the total concentrations of 16 PAHs ranged from 65.2 to 18,970 ng/g dry weight, with median concentration of 282ng/g. The PAHs profiles were dominated by four- to six-ring compounds which accounted for 87% of total PAHs. Source identification using diagnostic PAH ratios indicated that composition of PAHs in most sediment samples were characterized by pyrogenic PAH compositions. The presence of almost all human carcinogenic PAHs in the study area indicated that these sediments can impose serious threat to coastal and marine ecosystems, as well as to human health.

Biodegradability of laccase; produced by lipolytic yeast, *Aureobasidium pullulans* var. *melanogenum* from Sichang Island, on naphthalene, anthracene, pyrene and benzo[a]pyrene was determined using High Performance Liquid Chromatography (HPLC). The results revealed that the laccase produced from *A. pullulans* was able to degrade benzo[a]pyrene, anthracene, pyrene and naphthalene by 45.33, 38.16, 25.38 and 24.35 percent respectively, after the 48-h incubation period. For contaminated soils, degradation of naphthalene and anthracene by laccase were 51.34 and 85.06 percent respectively, after incubation for 9 days.

Denitrifying bacteria were screened from marine sediments collected from Sichang Island, Chonburi province. In this study, 8 bacterial isolates screened from marine sediments could be identified as species of *Enterococcus faecalis*, *Paenibacillus macerans*, *Bacillus subtilis*, *Bacillus tequilensis*, *Proteus mirabilis* and *Enterobacter asburiae*. Biodegradation efficiencies depended on types of the denitrifiers.

The obtained information from this study will be helpful in developing mitigation plan for eliminating, reducing to acceptable levels and adoption of best practice environmental management technique in order to reduce the negative impacts on coastal ecosystems of Koh Sichang and Siracha.

Key words: polycyclic aromatic hydrocarbons, PAHs, lipolytic yeast, laccase, denitrifying bacteria, biodegradation