

บทคัดย่อ

พื้นที่ลุ่มน้ำยมเป็นลุ่มน้ำหลักทางภาคเหนือของประเทศไทย มีเนื้อที่ 23,948.15 ตร.กม. ครอบคลุมพื้นที่ 11 จังหวัดและครอบคลุมลุ่มน้ำสาขา 11 ลุ่มน้ำ ได้แก่ ลุ่มน้ำแม่น้ำยมตอนบน แม่น้ำควบ แม่ปี้ แม่น้ำงava แม่น้ำยมตอนกลาง แม่คำมี แม่ต้า ห้วยแม่สิน แม่เมอก แม่รำพัน และแม่น้ำยมตอนล่าง ซึ่งพื้นที่ดังกล่าวประสบปัญหาภัยแล้ง น้ำท่วม และโคลนคลุ่มในช่วงหลายสิบปีที่ผ่านมา และพบว่ามีการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินพื้นที่เกิดขึ้นค่อนข้างสูงโดยพื้นที่ป่าเป็นพื้นที่ชุมชนและเกษตรกรรม นอกจากนี้การขาดสมดุลระหว่างน้ำตันทุนไม่เพียงพอต่อความต้องการน้ำในพื้นที่ลุ่มน้ำสาขาต่างๆ โดยเฉพาะหน้าแล้ง ดังนั้นในการศึกษานี้จะพิจารณากระบวนการทางอุทกวิทยาโดยบูรณาการของการให้หลังของน้ำผิวดินและน้ำบาดาลทั้งในด้านมิติของเวลาและสถานที่ร่วมกับผลของการเปลี่ยนแปลงสภาพการใช้ที่ดินของพื้นที่ ซึ่งผลจากการศึกษาใช้ในการพิจารณาวางแผนบริหารจัดการทรัพยากรน้ำในลุ่มน้ำยมอย่างยั่งยืนได้ วัตถุประสงค์ของแผนงานวิจัยประกอบด้วย

1. เพื่อศึกษาผลกระทบของการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินบริเวณลุ่มน้ำยมต่อคุณลักษณะน้ำท่าในพื้นที่ศึกษา
2. เพื่อประเมินศักยภาพของแหล่งน้ำผิวดินและน้ำบาดาลในเชิงปริมาณและคุณภาพสถานการณ์ความต้องการใช้น้ำผิวดินและน้ำบาดาลของลุ่มน้ำยม เพื่อเสนอแนวทางการจัดหน้าผิวดินและน้ำบาดาลรวมในพื้นที่ลุ่มน้ำยมเพื่อรับความต้องการน้ำในอนาคต
3. ประยุกต์ใช้แบบจำลองเพื่ออธิบายพฤติกรรมทางอุทกวิทยาร่วมระหว่างน้ำผิวดินและน้ำใต้ดิน เพื่อวิเคราะห์สมดุลน้ำในพื้นที่ศึกษาในช่วงเวลาต่างๆ
4. เพื่อเสนอแนวทางการบริหารจัดการน้ำผิวดินและน้ำบาดาล และจัดทำแผนรวมการบริหารจัดการทรัพยากรน้ำแบบบูรณาการในพื้นที่ลุ่มน้ำยม

ผลการศึกษาพบว่า ปริมาณน้ำท่าเฉลี่ยรายปีของลุ่มน้ำยมมีค่า 221.18 มม. (5,647.63 ล้าน ลบ. ม.) และเมื่อคิดเป็นสัดส่วนต่อพื้นที่ ลุ่มน้ำย้อยที่ก่อให้เกิดน้ำท่ามากที่สุด คือ ลุ่มน้ำควบ (439.61 มม.) และลุ่มน้ำย้อยที่ก่อให้เกิดน้ำท่าน้อยที่สุด คือ ลุ่มน้ำแม่รำพัน (161.92 มม.) เมื่อพิจารณาค่าสัมประสิทธิ์น้ำท่า พบว่าลุ่มน้ำยมมีค่าสัมประสิทธิ์น้ำท่าเฉลี่ย 0.185 สำหรับลุ่มน้ำย้อยที่มีสัมประสิทธิ์น้ำท่ามากที่สุด และน้อยที่สุด ได้แก่ ลุ่มน้ำควบและลุ่มน้ำห้วยแม่สินมีค่า 0.387 และ 0.138 ตามลำดับ ในด้านคุณภาพน้ำพบว่าบริเวณต้นน้ำของแม่น้ำยม คุณภาพน้ำโดยรวมอยู่ในเกณฑ์ดี ตามมาตรฐานคุณภาพน้ำผิวดินประเภทที่ 2 เพื่อการอนุรักษ์สัตว์น้ำและการประมง ต่อมาริเวณกลางน้ำแหล่งน้ำมีคุณภาพพอใช้คุณภาพน้ำโดยรวมจัดอยู่ในมาตรฐานแหล่งน้ำผิวดินประเภทที่ 3 เพื่อการเกษตร บริเวณปลายน้ำของแม่น้ำยมและในแม่น้ำพิจิตร คุณภาพน้ำโดยรวมจัดอยู่ในเกณฑ์เสื่อมโกร姆 ตามมาตรฐานคุณภาพน้ำผิวดินประเภทที่ 4 สามารถใช้ประโยชน์เพื่อการอุตสาหกรรม ปัจจุบันหลักของความเสื่อมโกร姆ของคุณภาพน้ำที่พบในแม่น้ำยมช่วงบริเวณปลายน้ำและในแม่น้ำพิจิตรนั้น ได้แก่ ปัจจุบันความสกปรกในรูปปีโอดี (BOD) โดยในช่วงฤดูฝนแหล่งน้ำบริเวณอำเภอโภทล喙 อำเภอโภธนี ประจำชั้ง จังหวัดพิจิตร และอำเภอบางระกำ จังหวัดพิษณุโลกในแม่น้ำยมที่สถานี YO01, YO02 และ YO04 ตามลำดับ นอกจากนี้แหล่งน้ำมีการ

ปัจจุบันแบบที่เรียกว่า “โคลิฟอร์มทั้งหมด” (TCB) พบปริมาณมากที่สุดใน YO05 บริเวณต่ำบลرانี อำเภอเมือง จังหวัดสุโขทัย เนื่องจากการปล่อยน้ำเสียจากชุมชนริมแม่น้ำ เมื่อพิจารณาความต้องการใช้น้ำในลุ่มน้ำยม พบว่าในสภาพปัจจุบัน (พ.ศ.2554) มีความต้องการใช้น้ำรวม 5,932 ล้าน ลบ.ม./ปี โดยมีสัดส่วนความต้องการใช้น้ำสูงสุด คือ ความต้องการใช้น้ำเพื่อการเกษตรกรรมทั้งในเขตและนอกเขตชลประทาน 5,853.34 ล้าน ลบ.ม./ปี ความต้องการใช้น้ำเพื่อการอุปโภคบริโภค 49.37 ล้าน ลบ.ม./ปี ความต้องการใช้น้ำเพื่อการอุตสาหกรรม 28.74 ล้าน ลบ.ม./ปี และความต้องการใช้น้ำเพื่อการท่องเที่ยว 0.55 ล้าน ลบ.ม./ปี และหากพิจารณาความต้องการใช้น้ำรวมคิดเฉพาะพื้นที่เกษตรกรรมในเขตชลประทานที่โครงการต่างๆ ที่มีศักยภาพในการส่งน้ำได้เท่านั้น จะมีความต้องการใช้น้ำรวมในลุ่มน้ำยม 2,470.02 ล้าน ลบ.ม./ปี ส่วนผลกระทบจากการคาดการณ์ความต้องการใช้น้ำรวมในอนาคตของลุ่มน้ำยมในปี พ.ศ. 2574 ประมาณ 5,720 ล้าน ลบ.ม./ปี ซึ่งพบว่าการคาดการณ์ความต้องการใช้น้ำเพื่อการเกษตรกรรมรวมทั้งในเขตและนอกเขตชลประทานประมาณ 5,630 ล้าน ลบ.ม./ปี หรือ 2,700 ล้าน ลบ.ม./ปี เฉพาะพื้นที่เกษตรกรรมในเขตชลประทาน การคาดการณ์ความต้องการใช้น้ำด้านอื่นๆ ได้แก่ เพื่อการอุปโภคบริโภค อุตสาหกรรม และการท่องเที่ยวมีประมาณ 53, 36 และ 0.7 ล้าน ลบ.ม./ปี ตามลำดับ ความต้องการใช้น้ำในพื้นที่ลุ่มน้ำยมในรายลุ่มน้ำสาขาพบว่าลุ่มน้ำแม่ยมทางตอนล่างมีความต้องการใช้น้ำสูงสุดร้อยละ 71 และรองลงมาคือลุ่มน้ำแม่รำพัน ร้อยละ 13 การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินในลุ่มน้ำยมระหว่างปี พ.ศ. 2531-2552 ส่วนใหญ่เกิดการเปลี่ยนแปลงมากที่สุดบริเวณด้านบนของพื้นที่ ซึ่งพื้นที่ป่าบริเวณด้านบนส่วนใหญ่ได้ถูก夷เป็นพื้นที่เกษตรกรรม ส่วนด้านล่างของลุ่มน้ำมีลักษณะเป็นที่ราบลุ่มน้ำทั่วไปมีการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินจากพื้นที่เกษตรกรรมไปเป็นพื้นที่เมือง (พื้นที่อยู่อาศัยและโรงงานอุตสาหกรรม) พื้นที่ป่าในปี พ.ศ. 2531 เปลี่ยนไปเป็นพื้นที่พืชไร่ในปี พ.ศ. 2552 มากที่สุด คือ 886.13 ตร.กม. (ร้อยละ 3.7 ของพื้นที่ลุ่มน้ำ) พื้นที่ป่าที่เปลี่ยนเป็นพื้นที่เกษตรกรรมทั้งหมด (นาข้าว พืชไร่ ไม้ยืนต้น) 1,359.09 ตารางกิโลเมตร (ร้อยละ 5.67 ของพื้นที่ลุ่มน้ำ) ในขณะที่พื้นที่ป่าและพื้นที่เกษตรกรรม (นาข้าว พืชไร่ ไม้ยืนต้น) ในปี พ.ศ. 2531 ไปเป็นพื้นที่เมืองในปี พ.ศ. 2552 เป็นพื้นที่ 333.34 ตารางกิโลเมตร (ร้อยละ 2.26 ของพื้นที่ลุ่มน้ำ) ซึ่งภายหลังการจำลองการให้ของน้ำท่าภายในสภาวะที่มีการเปลี่ยนแปลงการใช้ประโยชน์ที่ดินระหว่างปี 2531 และ 2552 พบว่าปริมาณน้ำท่ามีปริมาณสูงขึ้นในลุ่มน้ำสาขาต่างๆ โดยเฉพาะ ลุ่มน้ำแม่ยมตอนบน ลุ่มน้ำควร ลุ่มน้ำแม่สิน ลุ่มน้ำแม่อก และลุ่มน้ำแม่รำพัน

พื้นที่ศักยภาพน้ำบาดาลของลุ่มน้ำยม สามารถสรุปได้ดังนี้ ลุ่มน้ำยมมีพื้นที่ทั้งหมด 14.96 ล้านไร่ และมีพื้นที่ศักยภาพน้ำบาดาลโดยไม่ติดปัจจัยคุณภาพน้ำบาดาล และพื้นที่อนุรักษ์ ทั้งหมด 14.90 ล้านไร่ มีพื้นที่ที่มีศักยภาพน้ำบาดาลน้อยกว่า 2 ลบ.ม. ต่อ ชม. มีประมาณ 9.42 ล้านไร่ พบเป็นพื้นที่สูงและภูเขาสูงอยู่บริเวณฝั่งทางทิศตะวันออกและตะวันตกของพื้นที่ศึกษา และยังพบในพื้นที่ราบลุ่มบริเวณ อำเภอเมืองสุโขทัย อำเภอศรีสัชนาลัย อำเภอทุ่งเสลี่ยม อำเภอบ้านด่านลานหอย อำเภอเมืองสุโขทัย อำเภอคีรีมาศ และบางส่วนของอำเภอกรุงไกรลาศ อำเภอศรีนคร และ อำเภอสารคโลก ส่วนพื้นที่ที่มีศักยภาพน้ำบาดาลระหว่าง 2 - 10 ลบ.ม. ต่อ ชม. มีประมาณ

2.30 ล้านไร่ พบริเวณแอ่งน้ำบادาลแพร่เกือบทั้งหมด และยังพบทางตอนใต้ของพื้นที่ศึกษาบริเวณอำเภอพวนกระต่าย อำเภอไทรราม จังหวัดกำแพงเพชร และ อำเภอคงไกรลาศ จังหวัดสุโขทัย ในขณะที่พื้นที่ที่มีศักยภาพน้ำบادาลระหว่าง 10 – 20 ลบ.ม. ต่อ ชม. มีประมาณ 0.69 ล้านไร่ พบริเวณที่บริเวณอำเภอบางระกำ จังหวัดพิษณุโลก และบางส่วนของอำเภอสามง่าม อำเภอโพธิ์ประทับช้าง จังหวัดพิจิตร และ บางส่วนของอำเภอปีงสามัคคี จังหวัดกำแพงเพชร และพื้นที่ที่มีศักยภาพน้ำบادาลมากกว่า 20 ลบ.ม. ต่อ ชม. มีประมาณ 2.49 ล้านไร่ พบทางตอนใต้ของพื้นที่ศึกษาอยู่ใกล้ต่ำแห่งที่ตั้งของแม่น้ำยม บริเวณอำเภอสวรรคโลก อำเภอศรีสำโรง จังหวัดสุโขทัย อำเภอพรหมพิราม อำเภอเมือง อำเภอบางระกำ จังหวัดพิษณุโลก อำเภอสามง่าม อำเภอโพธิ์ประทับช้าง และ อำเภอโพททล จังหวัดพิจิตร เมื่อพิจารณาภาพรวมของคุณภาพน้ำบادาลในพื้นที่ลุ่มน้ำยมของทุกชั้นน้ำ พบริเวณที่ลุ่มน้ำยมมีค่าปริมาณสารทั้งหมดที่ละเอียดได้ อยู่ในเกณฑ์กำหนดที่เหมาะสม ยกเว้นพื้นที่จังหวัดสุโขทัย บริเวณอำเภอบ้านด่านลานหอย อำเภอเมืองสุโขทัย อำเภอสวรรคโลก อำเภอศรีสำโรง และ อำเภอทุ่ง เสลี่ยมและบางส่วนของอำเภอศรีสัชนาลัย มีปริมาณสารทั้งหมดที่ละเอียดได้เกินเกณฑ์กำหนดที่เหมาะสม แต่อยู่ในเกณฑ์อนุโลงสูงสุด นอกจากนี้ยังพบเกินเกณฑ์มาตรฐานที่อำเภอสอง จังหวัดแพร่ ในขณะที่ชั้นน้ำระดับลึกพบเกินเกณฑ์มาตรฐานเฉพาะที่อำเภอเชียงม่วน อำเภอปง จังหวัดพะเยา อำเภอจาว จังหวัดลำปาง อำเภอคลองจั่งหวัดแพร่ และ อำเภอคีรีมาศ จังหวัดสุโขทัย และที่อำเภอบางระกำ จังหวัดพิษณุโลก สำหรับปริมาณคลอร์ได้พบว่าอยู่ในเกณฑ์กำหนดที่เหมาะสมทั่วทั้งพื้นที่ลุ่มน้ำยม

จากการศึกษาพอสรุปสัดส่วนความต้องการใช้น้ำร่วมในพื้นที่ลุ่มน้ำยม มีความต้องการใช้น้ำผิดนิ�ิณ เพื่อการเกษตรร้อยละ 68.80 ของความต้องการน้ำด้านการเกษตรทั้งหมด และใช้น้ำบาดาลเสริมประมาณร้อยละ 31.20 และหากพิจารณาปริมาณความต้องการน้ำรวมทุกภาคส่วนพบว่ามีความต้องการใช้น้ำผิดนิ�ิณ ร้อยละ 68 และใช้น้ำบาดาลเสริมร้อยละ 32 สภาพสมดุลของน้ำในแต่ละพื้นที่มีความแตกต่างกันในเชิงปริมาณ โดยลุ่มน้ำยมทางตอนล่างมีแนวโน้มดุลน้ำส่วนขาดมากที่สุด มีปริมาณน้ำขาดแคลนประมาณ 2,200 ล้าน ลบ.ม. ส่วนพื้นที่ลุ่มน้ำยมทางตอนบนส่วนใหญ่พบปัญหาคุณภาพน้ำบาดาลในพื้นที่นอกเขตชลประทานและปัญหาน้ำหลัก ดังนั้นในการบริหารจัดการแหล่งน้ำเพื่อให้เพียงพอแก่ความต้องการของภาคส่วนต่างๆ และเพื่อความยั่งยืนของทรัพยากรน้ำผิดนิধิณและน้ำบาดาล ควรมีมาตรการหรือแนวทางการแก้ไขปัญหาที่เหมาะสมของแต่ละลุ่มน้ำทั้งแบบใช้โครงสร้างและไม่ใช้โครงสร้างชลศาสตร์ การศึกษานี้ได้เสนอแผนเพื่อปรับเทาปัญหาการขาดแคลนน้ำโดยมีการพัฒนาแหล่งน้ำกับน้ำขนาดกลางและขนาดเล็กในพื้นที่เหมาะสมในแต่ละลุ่มน้ำสาขาอยู่ต่างๆ และเพิ่มพื้นที่แก้มลิซึ่งมีความเหมาะสมในการสร้างโดยเฉพาะในพื้นที่ยมตอนล่าง ที่สามารถเก็บกักน้ำร่วมในแต่ละลุ่มน้ำอยขนาดประมาณ 50-150 ล้าน ลบ.ม. ร่วมกับการนำน้ำบาดาลมาใช้ไม่เกิน 25 % และไม่เกิน 40 % ของศักยภาพของแหล่งน้ำบาดาลในพื้นที่ยมตอนบนและยมตอนล่าง นอกจากนี้ยังได้เสนอจัดทำแผนบริหารจัดการน้ำแบบบูรณาการโดยการอนุรักษ์ป่าดันน้ำและปลูกป่าเพิ่มเติมโดยเฉพาะในพื้นที่ป่าเสื่อมโกรม และการกำหนดประเภทของพื้นที่พรรโนและระยะเวลาเพาะปลูกในแต่ละปีให้เหมาะสมกับปริมาณน้ำท่าและปริมาณน้ำฝนคาดการณ์ นอกจากนี้ควรมีการร่างข้อกำหนดและเกณฑ์การใช้น้ำผิดนิধิณและบาดาลของแต่ละพื้นที่

คำสำคัญ: ศักยภาพน้ำ, ความต้องการใช้น้ำ, น้ำผิวดิน, น้ำบาดาล, ล่มน้ำยม, การใช้ประโยชน์ที่ดิน

Abstract

The Yom river basin is the main river basin in the north of Thailand with an area of 23,948.15 square kilometers and covers 11 provinces, and 11 sub-watersheds, which are Upper Yom River Basin, Khuan River Basin, Pee River Basin, Ngao River Basin, Middle Yom River Basin, Kam mee River Basin, Tha River Basin, Huay Mae Sin River Basin, Mae Mok River Basin, Mae Ram Phan River Basin and Lower Yom River Basin. In recent years, this area has long been drought, floods and debris flow problems. It has found that the land use in this area has been highly converted from forest areas to urban and agricultural areas. Moreover, the water imbalance where there are water resources in each sub-watershed is insufficient to meet water demands, especially for the summer season. Therefore, this study considered hydrological process coupled surface with groundwater flow in term of temporal and spatial distribution, concerning with the effects of land use changes. Consequently, the results have been used to address the sustainable water management plan in the Yom River Basin. The objectives of this study are:

1. to determine the impacts of land use changes on flow characteristics in the Yom River Basin
2. to evaluate surface water and groundwater potential in term quantity and quality in and determine water demand (both surface water and groundwater) in the Yom River Basin in order to purpose an integrated plan to simultaneous supply of surface water and groundwater to meet water requirements in the future
3. to apply model to describe the hydrological interaction between surface water and groundwater to evaluate temporal variation in water balance in the area
4. to purpose the surface water and groundwater management guideline and formulate the master plan for sustainable water resources management in the Yom River Basin

The results reviewed that mean annual runoff in Yom River Basin is 221.18 mm or 5647.63 MCM. According to runoff efficiency (runoff volume per unit area), we found that sub-river basins generated the highest and lowest runoff are Khuan River Basin (439.61 mm.) and Mae Ram Phan River basins (161.92), respectively. The Yom River Basin has an average runoff coefficient at 0.185. Sub-basins have the highest and lowest runoff coefficients are Khuan (0.387) and Mae Sin River Basin (0.138), respectively. The water quality of the Upper Yom River is considered good quality, classified as Type 2 of the Thailand water quality standard, which can be properly used for aquatic organism of

conservation and fisheries. As for the middle part of the river, the water quality is considered satisfactory as Type 3 of the Thailand water quality standard, which can be used for agricultural purpose. As for the Lower Yom River and Pichit River, the water quality is considered poor as Type 4 of the Thailand water quality standard, which can be used for industrial purpose. Water quality problem in Yom River Basin mainly occurs in the Lower Yom River Basin and Pichit River, when passing Pho Talae (YO01), Pho Prathap Chang (YO02) in Phichit and Bang ra kum (YO04) in Phitsanulok province, which has relatively high BOD. Moreover, total coliform has been detected at Muang Sukhotai (YO05) in relatively high level, caused by the discharged community wastewater along the river. The water demand in the Yom River Basin is approximately 5,932 MCM/year. The highest category of total water demand is agricultural use for both irrigating and non-irrigating areas approximately 5,853.34 MCM/year. According to purposes of water use, domestic water consumption, industrial water demand and tourism water consumption are approximately 49.37, 28.74 and 0.55 MCM/year, respectively. The water demand of agricultural areas in irrigating areas reveals that the total water use of 2470.02 MCM/year in the study area. The future water demand (2031) in the Yom River will increase to 5,720 MCM/year. The future water demand of agricultural use for both irrigating and non-irrigating areas will be 5,630 MCM/year while the future water demand for irrigating areas will increase to 2,700 MCM/year. Moreover, in the future (2031), domestic water consumption, industrial water demand and tourism water consumption will increased to 53, 36 and 0.70 MCM/year, respectively. The highest water demand of sub-basin in the basin is the Lower Yom River (71 percent) and Mae Ram Phan has the second highest water demand in the basin (13 percent).

The land use in the upper Yom River has been substantially changed from forest land to agricultural areas between 1981 and 2009, while in the Lower Yom River the agricultural areas have been changed to urban areas (residential and industrial areas). The forest land has undergone a relatively substantial change to agriculture areas about 1359.09 km^2 (or 5.67%) while the forest land and agricultural areas have been changed to urban and build-up land approximately 333.34 km^2 (or 2.26%). Then, land use changes have caused a significant increase of runoff, particularly in Upper Yom River Basin, Khuan River Basin, Huay Mae Sin River basin, Mae Mok River basin and Mae Ram Phan River basin during 1998 - 2009.

The potential area for groundwater development in the Yom River Basin can be remarked here that : the total of Yom River basin is about 14.96 million rais and the potential area for groundwater development, in terms of quality and quantity, is about 14.90 million rais. The area that groundwater yields less than $2 \text{ m}^3/\text{hrs}$ is about 9.42 million rais. They are high land and high mountainous area on the east and the west of the study area which are on Amphoe Ngao, Lampang Province and some part of Amphoe Pong, Phra Yao Province, Amphoe Ban Luang, Nan Province as well as the flood plain area of Amphoe Thoen, Lampang Province and Amphoe Si Satchanalai, Amphoe Thung Saliam, Amphoe Ban Dan Lan Hoi, Amphoe Muang Sukhothai, Amphoe Khiri Mat, some part of Amphoe Kong Kralat, Amphoe Sri Nakhon and Amphoe Sawankhalok, Sukhothai Province. The area that produced the groundwater yield between $2-10 \text{ m}^3/\text{hr}$ is approximately 2.30 million rais, which occupied almost all of the Phrae Basin. They are Amphoe Pong, Amphoe Chiang Muan, Pha Yao Province, Amphoe Ban Luang, Nan Province and most parts of Phrae Province. Moreover, it is included the area of the southern part of the study area which are Amphoe Phran Kratai, Amphoe Sai Ngam, KamPhraeng Phet Province and Amphoe Kong kralat, Sukhothai Province. The groundwater yield between $10-20 \text{ m}^3/\text{hr}$ is existed in the area of 0.69 million rais of Amphoe Bang Rakam , Phitsanulok Province and some areas of Amphoe Sam Ngam, Amphoe Pho Prathap Chang, Phichit Province and some area of Amphoe Bueng Samakkhi, KamPhraeng Phet Province whereas the groundwater yield more than $20 \text{ m}^3/\text{hr}$ is existed in the area of 2.49 million rais of the area of Amphoe Sawankhalok, Amphoe Sri Samrong, Sukhothai Province, Amphoe Phrom Phiram, Amphoe Muang, Amphoe Bang Rakam, Phitsanulok Province, Amphoe Sam Ngam, Amphoe Pho Prathap Chang, and Amphoe Pho Thale, Phichit Province.

In terms of overall quality of the aquifer system in the Yom River Basin, it was found out that, in general, the total dissolved solids; TDS, were recorded within the standard of drinking water limit, except in the area of Amphoe Ban Dan Lan Hoi, Amphoe Muang Sukhothai, Amphoe Sawankhalok, Amphoe Sri Samrong and Amphoe Thung Saliam, and some part of Amphoe Sri Satchanalai, Sukhothai Province and Amphoe Song, Phrae Province which demonstrated the concentration of TDS exceeded the standard of drinking water limit. However, it fell within the range of maximum allowable limit. In terms of hardness of groundwater, it was higher than the standard of drinking water limit but it still was within the range of maximum allowable limit which

distributed in Amphoe Thung Saliam and Amphoe Ban Lan Hoi, Sukhothai Province, Amphoe Ngao, Lampang Province, Amphoe Rong Khwang, Phrae Province. However, the high hardness concentration was found in some area of Amphoe Ngao, Lampang Province and Amphoe Rong Wang, Phrae Province which exceeded the standard of drinking water limit. In terms of Chloride concentration, it was found varying within the range of standard of drinking water limit all over the Yom River Basin.

According to above results, the percentage of agricultural surface water use in the basin is about 68.80 percent of total water demand and the other source of agricultural water use of 31.20 percent is supplemented by groundwater resources. The total water demand for all sectors obtains from 2 main sources: surface water (68 percent) and groundwater (32 percent).

The water balance in each sub-basin is relative different amount of water. The Lower Yom River Basin has experienced water shortages about 2,200 MCM, the highest amount of insufficient water availability to meet the water requirement in the basin. Most areas in the Upper Yom River have faced floods and groundwater quality problems, particular in non-irrigating areas.

Therefore, the water resources management plan should compose of proper non-structural and structural measures, locally addressed specific problems for each sub-basin, in order to supply water demand of all sectors and to sustainable surface water and groundwater. This study purpose a plan formulated to mitigate water shortage problems with small- and medium-scale water resources development projects in the Upper Yom River Basin as well as with detention ponds suggested to develop especially in the Lower Yom River Basin, with the total volume ranged from 50 – 150 MCM. Such development projects will be recommended to satisfy the water requirement by groundwater resources, which should not be higher than 25 and 40 percent of the groundwater potential within the Upper and Lower Yom River Basin. In addition, the integrated water management plans is suggested that a restoration plan by conservation of the remaining forest and rehabilitation of the denuded forest, as well as the runoff and effective rainfall, which can provide in each sub-basin, are available to meet consumption water requirement according to types of crops and their planting periods.

Furthermore, the draft regulations and criteria for surface water and groundwater in specific areas should be established.

Key words: water potential, water demand, surface water, groundwater, Yom River Basin, land use changes