

สารคลอเรตถูกค้นพบว่าสามารถชักนำการออกดอกของลำไยได้ภายใน 1 เดือน หลังจากให้สารในทุกระยะเวลาของปีมาตั้งแต่ พ.ศ. 2541 หลังจากนั้นมีการใช้สารคลอเรตกันอย่าง กว้างขวางในสวนลำไยส่วนใหญ่ของประเทศไทย เพื่อที่จะจำกัดการแพร่กระจายของสารคลอเรตสู่ สิ่งแวดล้อม จึงควรจะกำจัดสารคลอเรตที่ตกค้างอยู่ในดินหลังจากที่ลำไยได้ออกดอกตามต้องการ แล้ว การวิจัยก่อนหน้าที่ให้ข้อมูลว่า การถลายตัวของคลอเรตเกิดจากและผันแปรตามกิจกรรมของ

จุลินทรีย์ ดังนั้นการเดิมสารประกอบการบอนที่ย่อยถลายง่าย เช่น น้ำตาลทรายหรือ กาหน้ำตาล จึงน่าจะช่วยเร่งกิจกรรมของจุลินทรีย์ที่มีผลให้การถลายตัวของคลอเรตเร็วขึ้น การวิจัยนี้ท้าในห้องปฏิบัติการและในสวนลำไย เพื่อหาวิธีการเร่งการถลายตัวของคลอเรตที่ เกษตรกรสามารถนำไปใช้ได้

ผลการศึกษาในห้องปฏิบัติการแสดงให้เห็นชัดเจนว่าสารละลายน้ำตาลทรายและ กาหน้ำตาล ซึ่งมีน้ำตาลซูโครสอยู่ด้วยร้อยละ 1.5 สามารถกำจัดคลอเรตตกค้างได้ภายใน 2 เดือน ของการบ่มผลการศึกษาในสวนลำไยผันแปรอย่างมาก การศึกษาในสวนแรกที่มีดินเป็นชุดดิน สันทราย พบแต่เพียงแนวโน้มว่าสารละลายน้ำตาลและกาหน้ำตาลทำให้คลอเรตในดินถลายตัว เร็วกว่าน้ำธรรมชาติไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ การศึกษาในสวนที่ 2 ที่มีดินเป็น ชุดดินปากช่อง โดยมีการปรับปรุงวิธีการเก็บตัวอย่างดินให้ดีขึ้นพบว่าสารละลายน้ำตาลและกาหน้ำตาลทำให้ คลอเรตในดินถลายตัวเร็วกว่าน้ำธรรมชาติอย่างมีนัยสำคัญทางสถิติตามผลการศึกษา ในห้องปฏิบัติการ

นอกจากนี้ยังไม่เป็นที่ทราบแน่ชัดถึงผลผลกระทบของคลอเรตต่อกระบวนการทาง สวีร์วิทยาของลำไยซึ่งได้ทำการศึกษาพบว่าอัตราการสังเคราะห์แสงในระยะ 3 วันแรกของใบลำไย ที่ได้รับโพแทสเซียมคลอเรตอัตรา 8 - 32 กรัมต่ำต่อตารางเมตรมากกว่าต้นที่ไม่ได้รับคลอเรตอย่างมี นัยสำคัญส่วนกระบวนการทางสวีร์วิทยาอื่น ๆ ได้แก่ การหายใจ การคายน้ำ ไม่ได้รับผลกระทบ จากการได้รับคลอเรต

ABSTRACT

TE 149633

Ever since 1998, it has been known that chlorate substance can regulate the flowering of longan within a month after application in any period of the year. From then on it has been extensively used in most orchards all over the country. In order to minimize the spread of chlorate residue in the environment, the remaining chlorate in the soil should be eliminated after flowering of longan has been induced. Previous researches have revealed that the decomposition of chlorate in soil varies with microbial activities in the soil. The application of simple carbon sources, e.g., cane sugar or molasses, therefore, may enhance the microbial activities and the decomposition of chlorate. This research was done in both laboratory and field conditions with the aim of finding appropriate method for eliminating chlorate residue in the soil.

Laboratory studies have clearly shown that both cane sugar and molasses (containing 1.5% of sucrose). Solutions were able to eliminate most of chlorate residue within two months of incubation although results of field studies varied greatly. The first field study in San Sai soil resulted no significant difference in the decomposition of chlorate in the soil treated with water, cane sugar solution and molasses solution. However, this study was able to show the trend of faster soil decomposition after treatment of cane sugar and molasses solutions. The second field study was done with Pak Chong soil using some adjustments in the methodology. Consequently, the second study has clearly confirmed the laboratory results .

In addition, since the effect of chlorate on plant physiological processes is still not clear known, an additional study was done to find out about this problem using longan plants. Results showed that photosynthesis in the first three days of the plants treated with 8-32 g/m² was much higher than untreated plants. But the study has indicated no effect on other physiological processes as observed.