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INTRODUCTION

In the early sixties Hartman and Stampacchia [1] introduced and studied variational
inequalities as a natural and significant extension of variational principles. The variational
inequalities have numerous applications in diverse areas of basic sciences and prove to be
productive and innovative. Pang [2] showed that the equilibrium problem, the spatial equilibrium
problem, the Nash equilibrium problem and the general equilibrium programming problem can be
uniformly modelled as a variational inequality defined on the product sets. He decomposed the
original variational inequality into a system of variational inequalities.

Using the projection technique, one may usually establish the equivalence between a system
of variational inequalities and fixed point problems. Most of the iterative methods for solving the
system of variational inequalities have been considered in a convex setting. This is because all the
techniques are based on the properties of the projection operator over convex sets, which may not
hold in general when the sets are non-convex.

Ceng and Yao [3] introduced and studied an implicit process with perturbed mappings for
finding a common fixed point of infinitely many non-expansive mappings, and Yao et al. [4]
introduced and considered an iterative scheme for finding a common element of the set of solutions
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to an equilibrium problem and the set of common fixed points of infinitely many non-expansive
mappings in Hilbert spaces. Zegeye and Shahzad [5] introduced an iterative process with strong
convergence to a common solution to the variational inequality problem for two monotone
mappings in Banach spaces. Censor et al. [6] studied a new variational inequality problem involving
the common solutions to variational inequalities. Other items of related work can be found in
Kumam et al. [7] and references therein.

In this paper we generalise the problem of Censor et al. [6] and obtain the common solutions
to a system of generalised unrelated variational inequalities in a real Hilbert space. We present an
iterative procedure to solve the system and establish the procedure’s strong convergence.

PRELIMINARIES

Throughout the paper we assume that H is a real Hilbert space with its norm || - || and inner

product {-,-). When {x,},en converges weakly to x, we denote it by w-limx™ = x, and when

n—-oo

{x, Inen converges strongly to x, we denote it by limx™ = x . The following concepts and

n—-oo

results are essential to prove the main result of this paper.

Condition 1 (Opial Condition) [8]. A Hilbert space H is said to satisfy the Opial condition if, for
every x € H and each sequence {x,},_, € H that converges weakly to x,

lim,, oinf [Ix" — x|l < limy, oinf [Ix™ =yl (1)
holds for y # x.
Condition 2 (Kadec-Klee property) [9]. A Hilbert space H is said to satisfy the Kadec-Klee
property if ||x™ — x|| = 0 whenever ||x™|| = ||x|| and x,, = x weakly.
Definition 1. A function g: H —» (—o0, +00] is called weakly lower semicontinuous if

g(x) < limy, 1 inf g(x™) )

n

for any sequence {x,}, _, which satisfies w-lim,_, ;. x™ = x.

Definition 2. Let f: H — H be a single-valued mapping; then
(i) f i snronotonei f foral K,y € H,
(fG) = f)x—y)= 0;
(i) f isLi pschitontinuouisft her exi st&constana > 0sucht hatforal k,y € H,
Ilf G — fFMI < allx = yll.
Definition 3. A set-valued mapping A: H —» 2 is said to be
(i) nonotonei f
(u—v,x—y)= 0 foral K,y € H, u€ A(x) andv € A(y); 3)
(i ) maxi malnonot onei fi i snonot oneandt hegraphofAi snotproperl yontai neidn
t hegraphofanyot hemonot onemappi ng

Let K be a non-empty, closed and convex subset of H. For each point x € H, there exists a
unique nearest point in K, denoted by Py (x), i.e.

llx = P COIl < llx = yll, 4
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foral ly € K. The operator Px: H - K is called the metric projection of H onto K. It is well known
that Py is the non-expansive operator from H onto K. The projection Py is characterised [10] by the
following two properties:
Py(x) € K (5)
and
(x = Pg(x),y — Px(x)) < 0, (6)

foral k € H, y € K. If K is a hyperplane, then (6) becomes an equality. It is easy to check that (6)
is equivalent to

llx = P CONI? + lly = PeCOII* < llx = ¥lI?, (7)
foral k € H,y € K. We denote by N (v) the normal cone of K at v € K, i.e.
N¢(w)={z€H:(z,y—v)< 0, Vye K} )

We recall that in a real Hilbert space H the following property holds:
I1x+ (1=Dyll?=21x1? + A= Dlyll> — 21 = Dllx = ylI%, ©)
forall x,y € H and A € [0,1].

Lemma 1 [6]. Consider the half-space
Hx,y)={z€ H:(x—-y,z—y)< 0} (10)

Given two points x and y in H and setting y; = Ax + (1 —A)y for any A € [0,1], then H =
H(.X',)/) c H(xf)/l)-

FORMULATION OF THE PROBLEM AND ITERATIVE ALGORITHM

In this section first we formulate the problem of finding common solutions to a system of
generalised unrelated variational inequalities in a real Hilbert space.

For i =1,2,--,n, let A;,B;:H — 29 be the set-valued mappings and K; € H with
NL,K; # @ be the non-empty, closed and convex subsets. Let f,g:H — H be single-valued
mappings. We consider the following problem of obtaining common solutions to a system of
generalised unrelated variational inequalities:

Find a point x* € N, K; such that for each i = 1,2,:-,n, there exist u; € A;(x*), v; €
B;(x*) and

(f@) - gwx—x") = 0. (11)

We denote the solution set of problem (11) by SLSVI(A;, B;, K;).

When f, g = I, the identity mappings and B; = 0, then problem (11) coincides with problem
(1.1) of Censor et al. [6], and consequently one can obtain the convex feasibility problem and the
common fixed-point problem from (11) for n > 1 by simple observations. For more details, see
Konnov [11], Ansari and Yao [12] and Kassay and Kolumban [13]. It is clear that for suitable
choices of operators involved in the formulation of problem (11), one can obtain many related
problems studied previously.

We now construct an iterative algorithm for finding the common solution to a system of
generalised unrelated variational inequalities (11).

Algorithm 1. Fori =1,2,---,n, let 4;, B;: H - CB(H) be the set-valued mappings and all other
mappings and conditions be the same as stated in problem (11).
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For a given initial point x! € H, compute the iterative procedure as:
(=P (" = W) = Brgw!), uft € 4™, vl € B(x™).
find wi* € A;(y]') and s* € B;(y]') such that

2t = P, (x™ = AT W) = B g (™),

¢ Ct={ze€ H:|lz!' —z|| < |lx" - z|| }, (12)
c" =n, CT,
Wht={ze Hi{(x'—x"z—x")< 0},
L X" = Pengyn(x?).

The elements w{*, s;*, together with uj’, v;* respectively, satisfy the following conditions:

Iw? —ul'll < B(A,(M), Ai(x™) < ky lly? — x™l,
and (13)
s — vl < H(B;(y!"), B;(x™) < ky Iy — x™I,

where H(-,) denotes the Hausdorff metric on CB(H).
We remark that from our Algorithm 1, one can easily get Algorithm 3.1 of Censor et al. [6]
by simple computation, and thus our algorithm is more general.

STRONG CONVERGENCE THEOREM

In this section we discuss the convergence criteria of the proposed iterative algorithm. We
need the following lemma for the proof of our main result.

Lemma 2. Let A:H — 2H be the maximal monotone operator. Then

(i) graphofA iscl osed

(i) thesol uti et SLSVI(A;, B;, K;) is closed and convex for all closed and convex subsets
K; € H.
Proof. The proof is similar to that for Lemma 2.4(ii) of Cruz and Tusem [14].

We now prove our main result, which is a generalisation of Theorem 3.6 of Censor et al. [6].

Theorem 1. Let A;,B;: H — 2 be maximal monotone and Lipschitz continuous mappings, with
Lipschitz constants ky; and k, respectively. Let f,g:H — H be single-valued monotone and
Lipschitz continuous mappings, with Lipschitz constants a, and a, respectively. Let the common
solution set F = N[-;SLSVI(A;, B;,K;) be non-empty. Let the sequences {A}},{B{'} € [0,1] be
such that

(@) Akyay + Bitkpa; < 15

(ii) % < 1;

(i) [AFB!] < ab where0 <a <b < kii,i =1,2.

Then the sequences {x™}nen, (V' Inen and {z{' }pen , generated by Algorithm 1, converge
strongly to Pr(x1).
Proof. For the convenience, we divide the proof into the following four steps.

Step 1. The projection Pr(x!) and the sequence {x"},cy are well defined.
Clearly by Lemma 2, SLSVI(A;, B;, K;) is a closed and convex subset of H. Hence F is non-
empty, closed and convex so that Pr(x1) is well defined. Also, it is clear that both C* and W™ are
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closed half-spaces for alln > 1. Therefore, C™ and C™ N W™ are closed and convex for all n > 1.
Further, we are to show that C* N W™ #= @ for all n.
From Algorithm 1, we have

(P ={z€ H:llzZf — 2l < |Ix" — 2]l }.

It follows from Lemma 1 that
Chc{ze Hi(x—y,z—y)< 0 }.

Let C" = NL,C*. Now we show that F S €"n W" for alln € N. First, we prove F € C™.
For this, lett € F, b* € A;(t) and d}* € B;(t). Using the monotonicity of f and g, equation (7) and
the fact that t € SLSVI(A;, B;, K;), it follows that

122 = ¢l = ||Pe,(x™ = A7 Fwi) = g (sP) — |
< lx™ = AFf W) = Brg(st)) — tll? = lIx™ = ALf W) = Blrg(s()) — z'|I?
= [lx™ = tlI? = llx™ = 2| + 2(t =z, AT f W) + Bl'g(sT))
= llx™ = tll> = llx™ = 271> + 227 fw), t — z1') + 2B[{g(s]),t — z")
= [lx™ —tll? = [lx™ = 2]'117 + 2248 fF W), t ="y + 2A7(fF W), ¥ — 2]")
+ 287 g(st), t =y + 2B g(s7), yi' — z1")
= |lx™ = tll* = llx™ = 21> + 247 fw]") = f(B]") + f(B"), t — y')
+ 20w, ¥t — 2"y + 2B g(s{") — g(d) + g(d[), t — y{")
+26 9(s{). yi — zi)
= llx™ = tll® = llx™ = 2 1? + 22 f W) — F(B), t — yi") + 2A7(f (b]"), t — yT1')
+2B7(g(si') —g(@), t =y + 2B g(d). t —yi") +2B{(g(d]), t —yi")
+ 20 f W) + B g (s, yit — z")
< lx™ = tl1? = llx™ = 217 + 228 F (B, t — yi') + 2B[g(d]), t — yI')
+2(7 fwW) + B g(s), yi — 2")
= [lx™ = tll*> = llx™ = 271> + 2¢AFf (b)) + Brg(d]). t — yi)
+2(Af (W) + B g (s, yi' — 7")
= llx™ = tll> = Ix™ =y + ¥y = 271> + 27 fF W) + B g(s?), yit — 2]")
= |lx™ = tll* = llx™ =y 17 = Iy = 271> = 2(x™ =y, yi* — 21')
+2f (W) + B g (i), yit — z")
= [lx™ = tlI* = lIx™ = y7*I> = lly* = z]'l|?
2 f W) + B g(si) + vt —x™ ¥ — z)"). (14)
Using equation (6), we have
(A fW) + B g +yi —xm vy —z) = (" = A f W) = B'g(s{) —yi" 2 — yi")
=(x" = A f W) = B9 —yihz = yi)
HAf () + B g(w) — A f (W)
—=Bi'g(si), zi' — yi')
<A@ — fwh),z" —yi*
+ B g") —g(si) 2zl —yi'). (15)

Using Cauchy-Schwarz inequality and inequality (15), we have

(" = f W) = B'g(si) =yt 2z = yi") < A Nf @) = FwdI Iz = yil
+B Mg (wi) — gz — yi'll.
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Using Lipschitz continuity of f, g, A; and B;, the above inequality becomes

(X" = A f W) = Blg(si) —yihzl —yi') < Aaq kallx™ = yitllllzi = vl
+B azko llx™ = yitllllzi — v
= (Akyay + Bikaa)|Ix™ — yi'||
Iz = y7I. (16)
Using (16), the inequality (14) becomes
lz" — el < llx™ = tll® = llx™ = 712 =y — 2211
+2(A7kyay + Bitkaa)llx™ = yi'llllz — yitll- (17)
Now
2
0< ((Akyay + BlHlya)llx™ = yIHll = llz! = yPII)
= (ATkyay + Blkaaz P NIx™ =y 12 + NIz = vl
2N kiay + Bt kpa)|[x™ — yitllllzt — yi'll, (18)
or
2% kyay + ko) lIx™ = yllllzl — vl < (ATkqaq + Blkaaz)?[Ix™ — yitl|?
+Hiz" = ylI%. (19)
Therefore, inequality (17) becomes

lzi' —ell® < llx™ =l = lIx™ =y 112 = Nyl — 20112 + (AT kaas + Bitkoaz)?||x™ — v lI?

+lz =yl
= ||x™ — t||* = lIx™ — y]II* + (A kyay + Blkaa)?|lx™ — yIHI?
= lx™ = tlI* = lIx™ — y]'I* (1 — (A kyay + Bltkoa2)?). (20)

Since ATk aq + Blk,a; < 1, we have ||z]* — t||* < ||x™ — t]|%. Therefore, t € C™. Consequently
F c C]* foralln > 1.

Applying mathematical induction, we then show that sequence {x"} is well defined. Clearly,
FcCland F € W?' = H,so it follows that F € C* N W1 and therefore x2 = P11 (x1) is well
defined. Now let F € €™ 1 n W™ 1 for some n > 2 and let x™ = Pgn-1,n-1(x1). Now we have

F € C™ and for any t € F, it follows from the property of projection operator that
(xt—x™t—x") = (x! = Pan-1pm-1(x1), t — Pan-1qpm-1(x1)) < 0.

This implies that t € W™, Therefore, F € C™ N W™ for any n > 1. Hence the sequence {x,,} is well
defined.

Step 2. The sequences {x" }pen, {V{ Inen and {z]'},,en are bounded.
Since x"*1 = Pcnp yn(x1), we have, forany t € C* n W™,
e ™ = x| < [l = x|, (21)

Hence {x™},,cn is bounded. From the definition of W™, we have x™ = Pyn(x1). Since x™*1 € W™,
it follows from (7) that

™+ — ™12 + [lx™ — M2 < [l =22 (22)
Thus, the sequence ||x™ — x1||,,ey is increasing and bounded, and hence convergent. Also,
limp Lo |lx™t — x™|| = 0. (23)

Since x™*1 € C[', we have
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lz — x™| < [lx™ — x™ ], (24)
and therefore,
lim,_ ollz]' —x™|| =0,fori=12,,n. (25)
Thus, {z'} is a bounded sequence for each i = 1,2,--+,n. It follows from (20) that
Ix™ = y7'1I? (1 = (ATkyaq + Blaaz)? ) < |lx™ — tl|* — |z]* — ¢]|?
Ix™ =y 12 < (1= (Akyaq + Bikza2)?) 7 (lIx™ — ¢l|?
—llz* = ¢lI*)
= (1 - (Afkyay + Blkaa)®) ™ (lIx™ — ¢l + |12 + tI])
(llx™ = el = llz" = tl)
< (1= (ATkyay + Blka)? ) 7H(Ix™ = 21
(lx™ = el + 12" = tl]). (26)
Now using (25), condition (i), and the fact that {x"},cy and {z]'},,cy are bounded, we have
limy ollx™ =yl =0, foralli =12, ,n. (27)
Therefore, {y;'} is also bounded.
Step 3. Any weak limit point of the sequences {X"},.en, (V] }nen and {z]'},en belongs to F.
Since {x™} is bounded, there exists a subsequence {x"/};cy of {x™} which converges
weakly to x*. So it follows from (27) that there exists a subsequence {yln J }jENof {y{'} which

converges to x* for each i = 1,2,---,n. Next, we show x* € F. Let T; and T; be the mappings
defined by

_ (A;(v) + Ng,(v) v € K;;
and
Bj(v) + Ng,(v) v € Kj;
T;(v) ={Qj v RiGRv 5&1{-, (29)

where Ny, (v), NK]. (v) are normal cones of K;, K; respectively at v € K; N K;. Since A; and B; are
maximal monotone mappings, then from Theorem 5 of Rockafellar [15], T;, T; are maximal
monotone operators and ;' (0) N T;*(0) = SLSVI(A;, B;, K).

Let (v,t;) € graphT;, (v,t;) € graphT; with v € K; NK; . Let p; € A;(v) and q; €
B;i(v). Since t; € T;(v) = A;(v) + Nk, (v), we get f(t;) — f(p;) € Ng,(v) and for t, € Tj(v) =
Bi(v) + Nk, (v) , we get g(t;) —g(q;) € Ng,(v). Since yl.nj € K; N K;, we obtain (f(t;)—
f(p),v— yinj) > 0 and (g(ty,) —g(q),v— yinj) > 0, and since we have yl.nj = Pk, (x™ —

ni; ni ni ni .
A fw”) = B;’g(v;”)), we obtain that

(2 =27 () = B g(0”) =y v -y ) < 0,
. nj n; n;j n;j nj nj nj n;
<xn]_yi ]'U_yi]>_ﬂ'i](f(uij)'v_yi ’)—,Bi’(g(vi]),—yi’)s 0,

xnj_yln] Tl.j le Tl.j ﬁ:l] le Tl.j
(W,U—yi Y= (f(w),v—y, >_F(g(vi )v—y")<0,
i i i

n;

xnj—yi 7 : : : : :
(v =y ) =) v =3 = (9w v =5 < 0. G0)

i Fi
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In view of the monotonicity of the mappings 4;, B;, i = 1,2, -+, n, we see that

(ft) +g(t),v—y"7 )= (flp) +9@)v—y")
= (F0)+ 9(a) v =3 )+ (e v =)
—~(f) v =y =g, ) v =)
= (f@) = FwW)v =y + (fFw) = £ ") v = ¥
+(g(q:) — g(sinj)'v - yinj> + (H(Sinj) - g(vinj)'v - yinj>
xnf—y?j oy
MR
>(fw, ) = fa ), v =y )y +(g(s;) — g ), v—y")
xnf—y?j oy
+ ( gV 7Y ). (31

i Fi

From the Cauchy-Schwarz inequality, we have

(Ft) + 9D, v ="y = =f(w,?) = £ )My = vl + 1g(s;”) = g(v IlIv — v,

"=y, ) n;
+———lv -y ID. (32)
Since A;, B;, fand g are Lipschitz continuous, the above inequality becomes
. n;
nj n. nj n: nj ”an — Y ]” nj
(ft) +9(t2) v =y ") 2 —(aakallx™ =y Il + @k |Ix™ =y, 7l + ——=—— v =¥, ID
o oy, XYy
= —M(aikq[Ix™ =yl + azky|lx™ =y /|| + ———), (33)

where M = suppey {“v—yl.nj“}. Taking j — oo and using the fact that {”v—yl.nj”}jeN is

bounded, we see that ( f(t;) + g(t,), v —x*) = 0. Using maximal monotonicity of T; , we have
x* € T 1(0) = SLSVI(A;, B;,K;). Hence x* € F.

Step 4. The sequences {x"}en, (V' Inen and {z/'}eny converge strongly to Pp(x?1).
One can prove this by following the same arguments as used in claim 3.10 of Theorem 3.6
of Censor et al. [6] and by Kadec-Klee property. This completes the proof. ]
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