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Abstract:  A system of generalised unrelated variational inequalities in a real Hilbert space 

is considered. We construct an iterative algorithm for finding common solutions to the 

system and establish strong convergence of the algorithm. 
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INTRODUCTION  
 

In the early sixties Hartman and Stampacchia [1] introduced and studied variational 

inequalities as a natural and significant extension of variational principles. The variational 

inequalities have numerous applications in diverse areas of basic sciences and prove to be 

productive and innovative. Pang [2] showed that the equilibrium problem, the spatial equilibrium 

problem, the Nash equilibrium problem and the general equilibrium programming problem can be 

uniformly modelled as a variational inequality defined on the product sets. He decomposed the 

original variational inequality into a system of variational inequalities. 

Using the projection technique, one may usually establish the equivalence between a system 

of variational inequalities and fixed point problems. Most of the iterative methods for solving the 

system of variational inequalities have been considered in a convex setting. This is because all the 

techniques are based on the properties of the projection operator over convex sets, which may not 

hold in general when the sets are non-convex.  

Ceng and Yao [3] introduced and studied an implicit process with perturbed mappings for 

finding a common fixed point of infinitely many non-expansive mappings, and Yao et al. [4] 

introduced and considered an iterative scheme for finding a common element of the set of solutions 
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to an equilibrium problem and the set of common fixed points of infinitely many non-expansive 

mappings in Hilbert spaces. Zegeye and Shahzad [5] introduced an iterative process with strong 

convergence to a common solution to the variational inequality problem for two monotone 

mappings in Banach spaces. Censor et al. [6] studied a new variational inequality problem involving 

the common solutions to variational inequalities. Other items of related work can be found in 

Kumam et al. [7] and references therein. 

In this paper we generalise the problem of Censor et al. [6] and obtain the common solutions 

to a system of generalised unrelated variational inequalities in a real Hilbert space. We present an 

iterative procedure to solve the system and establish the procedure’s strong convergence. 
 
PRELIMINARIES  
 

Throughout the paper we assume that � is a real Hilbert space with its norm  ‖ ⋅ ‖ and inner 

product 〈⋅,⋅〉. When  {��}�∈ �  converges weakly to �, we denote it by w- ���
�→�

�� = �, and when 

 {�� }�∈ �   converges strongly to � , we denote it by  ���
�→�

�� = �  . The following concepts and 

results are essential to prove the main result of this paper. 
 

Condition 1 (Opial Condition) [8].  A Hilbert space � is said to satisfy the Opial condition if, for 

every � ∈ � and each sequence {��}
�∈�

∈ � that converges weakly to �, 
 

����→ ����� ‖�� − �‖ <   ����→ ����� ‖�� − �‖                                          (1)  
 
holds for � ≠ �. 
 
Condition 2 (Kadec-Klee property) [9]. A Hilbert space �  is said to satisfy the Kadec-Klee 

property if ‖�� − �‖ → 0 whenever ‖��‖ → ‖�‖ and �� → � weakly.  
 
Definition 1.  A function �:� →  (− ∞ , + ∞ ] is called weakly lower semicontinuous if 
 

�(�) ≤  ����→ �∞��� �(��)                                                            (2)  
 
for any sequence {��}

�∈�
 which satisfies w-����→ �∞�� = �. 

 
Definition 2.  Let �:� →  � be a single-valued mapping; then 

  (i)  f  is monotone if, for all x, y ∈  H , 

〈 �(�)− �(�), � − �〉 ≥  0;  

  (ii) f  is Lipschitz continuous if there exists a constant α > 0 such that for all x, y ∈  H , 

‖�(�)− �(�)‖ ≤ �‖� − �‖. 
 
Definition 3.  A set-valued mapping  �:� →  2� is said to be  

   (i)  monotone if  

〈 � − �, � − � 〉 ≥  0  for all x, y ∈  H , u ∈  A(x) and v ∈  A(y);                           (3) 
 

   (ii) maximal monotone if  it is monotone and the graph of A is not properly contained in 

           the graph of any other monotone mapping. 
 

Let � be a non-empty, closed and convex subset of �. For each point � ∈  �, there exists a 

unique nearest point in �, denoted by ��(�), i.e. 
  

                                                            ‖� − ��(�)‖ ≤ ‖� − �‖,                                                    (4) 
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for all y ∈ K.  The operator ��:� →  � is called the metric projection of � onto �. It is well known 

that �� is the non-expansive operator from � onto �. The projection �� is characterised [10] by the 

following two properties:  

��(�) ∈  �                 (5) 

and  

                                             〈 � − ��(�), � − ��(�)〉 ≤  0,                                                              (6) 
 
for all x ∈ H ,   y ∈ K.  If � is a hyperplane, then (6) becomes an equality. It is easy to check that (6) 

is equivalent to 

     ‖� − ��(�)‖� +  ‖� − ��(�)‖� ≤ ‖� − �‖�,                                          (7) 
 
for all x ∈ H , y ∈ K.  We denote by ��(�) the normal cone of K at � ∈ �,  i.e. 
 

��(�) =  { � ∈ �:〈 �, � − � 〉 ≤  0,   ∀ � ∈  � }.                                      (8) 
 
We recall that in a real Hilbert space � the following property holds: 
 

‖� � +  (1 − �)�‖� = � ‖�‖�  +  (1 − �)‖�‖� − �(1 − �)‖� − �‖�,                   (9) 
 
for all �, � ∈ � and � ∈ [0,1]. 
 
Lemma 1 [6].  Consider the half-space 
 

�(�, �) =  { � ∈  � ∶ 〈 � − �, � − � 〉 ≤  0 }.                                             (10) 
 
Given two points �  and �  in �  and setting �� = �� +  (1 − �)�  for any � ∈ [0,1], then � =

�(�, �) ⊆  �(�, ��). 
 
FORMULATION OF THE PROBLEM AND  ITERATIVE ALGORITHM   
 

 In this section first we formulate the problem of finding common solutions to a system of 

generalised unrelated variational inequalities in a real Hilbert space. 

For � = 1,2, ⋯ , �,  let ��, ��:� →  2� be the set-valued mappings and �� ⊆ �  with 

 ⋂���
� �� ≠ ∅  be the non-empty, closed and convex subsets. Let �, �:� →  �  be single-valued 

mappings. We consider the following problem of obtaining common solutions to a system of 

generalised unrelated variational inequalities: 

          Find a point  �∗ ∈ ∩���
� ��  such that for each � = 1,2, ⋯ , �,  there exist ��

∗ ∈  ��(�∗), ��
∗ ∈

 ��(�∗)  and  

〈 �(��
∗)− �(��

∗), � − �∗〉 ≥  0.                                                                 (11) 
 
We denote the solution set of problem (11) by �����(��, ��, ��). 

         When �, � = �, the identity mappings and �� ≡  0 , then problem (11) coincides with  problem 

(1.1) of Censor et al. [6], and consequently one can obtain the convex feasibility problem and the 

common fixed-point problem from (11) for n > 1 by simple observations. For more details, see 

Konnov [11], Ansari and Yao [12] and Kassay and Kolumban [13]. It is clear that for suitable 

choices of operators involved in the formulation of problem (11), one can obtain many related 

problems studied previously. 

   We now construct an iterative algorithm for finding the common solution to a system of 

generalised unrelated variational inequalities (11). 
 

Algorithm 1.  For � = 1,2, ⋯ , �,  let ��, ��:� →  ��(�) be the set-valued mappings and all other 

mappings and conditions be the same as stated in problem (11). 
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For a given initial point �� ∈ �, compute the iterative procedure as:   
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

��
� = ���

��� − ��
��(��

�)− ��
��(��

�)�,   ��
� ∈  ��(��), ��

� ∈  ��(��).

���� ��
� ∈  ��(��

�) ��� ��
� ∈  ��(��

�) ���ℎ �ℎ��                                                   

��
� = ���

��� − ��
��(��

�)− ��
��(��

�)�,                                                       

���
� = {� ∈  �:‖��

� − �‖ ≤ ‖�� − �‖ },                                                        

�� =∩���
� ���

�,                                                                                                      

 �� = {� ∈  �:〈 �� − ��, � − �� 〉 ≤  0 },                                                        

���� = ����
�∩ ��(��).                                                                                                

           (12) 

 
The elements ��

� , ��
�, together with  ��

�, ��
�  respectively, satisfy the following conditions: 

 

�

‖��
� − ��

�‖ ≤   �����(��
�), ��(��)� ≤  �� ‖��

� − ��‖ ,

���                                                                                           
‖��

� − ��
�‖ ≤ �����(��

�), ��(��)� ≤  �� ‖��
� − ��‖ ,    

                (13) 

 
where ��(⋅,⋅) denotes the Hausdorff metric on ��(�). 

We  remark that from our Algorithm 1, one can easily get Algorithm 3.1 of  Censor et al. [6]  

by simple computation, and thus our algorithm is more general. 
 
STRONG CONVERGENCE THEOREM   
 

In this section we discuss the convergence criteria of the proposed iterative algorithm. We 

need the following lemma for the proof of our main result. 
 

Lemma 2.  Let A:H →  2� be the maximal monotone operator. Then  

   (i)  graph of A  is closed; 

  (ii)  the  solution set  �����(��, ��, ��) is closed and convex for all closed and convex subsets 

K� ⊆ H . 
 
Proof.  The proof is similar to that for Lemma 2.4(ii) of Cruz and Iusem [14]. 
 

       We now prove our main result, which is a generalisation of Theorem 3.6 of Censor et al. [6]. 
 

Theorem 1.  Let ��, ��:� →  2� be maximal monotone and Lipschitz continuous mappings, with 

Lipschitz constants ��  and ��  respectively. Let �, �:� →  �  be single-valued monotone and 

Lipschitz continuous mappings, with Lipschitz constants �� and ��  respectively. Let the common 

solution set � = ⋂���
� �����(��, ��, ��) be non-empty. Let the sequences  {��

�} , {��
�} ⊂ [0,1] be 

such that  
 

 (�) ��
����� +  ��

����� ≤  1; 

 (��)  
��

�

��
�  ≤  1; 

 (���) |��
�||��

�| ≤  ��  �ℎ��� 0 < � < � <
�

��
, � = 1,2. 

 
Then the sequences  {�� }�∈ � , {��

� }�∈�  and {��
� }�∈� ,  generated by Algorithm 1, converge 

strongly to ��(��). 
 
Proof.  For the convenience, we divide the proof into the following four steps. 
 
Step 1.  The projection ��(��) and the sequence {��}�∈� are well defined. 

         Clearly by Lemma 2, �����(��, ��, ��)  is a closed and convex subset of �. Hence � is non-

empty, closed and convex so that ��(��) is well defined. Also, it is clear that both ��
� and �� are 
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closed half-spaces for all � ≥ 1. Therefore, �� and �� ∩ �� are closed and convex for all � ≥ 1.  

Further, we are to show that  �� ∩ �� ≠ ∅  for all �. 

         From Algorithm 1, we have 

���
� =  { � ∈  � ∶ ‖��

� − �‖ ≤ ‖�� − �‖ }. 

It follows from Lemma 1 that 

���
� ⊆  { � ∈  �:〈 � − �, � − � 〉 ≤  0  } . 

 
Let ��� = ⋂���

� ���
� .  Now we show that  � ⊆  ��� ∩  �� for all � ∈ � .  First, we prove � ⊆  ���.  

For this, let � ∈ �,  ��
� ∈ ��(�) and ��

� ∈ ��(�). Using the monotonicity of � and �, equation (7) and 

the fact that � ∈ �����(��, ��, ��),  it follows that 
 

 ‖��
� − �‖�  = ����

��� − ��
� �(��

�)− ��
��(��

�)� − ��
�

 

    ≤ ‖�� − ��
��(��

�)− ��
��(��

�))− �‖� − ‖�� − ��
��(��

�)− ��
��(��

�))− ��
�‖� 

       = ‖�� − �‖� − ‖�� − ��
�‖�  +  2〈 � − ��

�, ��
��(��

�)+ ��
��(��

�)〉 

= ‖�� − �‖� − ‖�� − ��
�‖�  +  2��

�〈 �(��
�), � − ��

�〉  +  2��
�〈�(��

�), � − ��
�〉 

    = ‖�� − �‖� − ‖�� − ��
�‖� +  2��

�〈 �(��
�), � − ��

�〉  +  2��
�〈 �(��

�), ��
� − ��

�〉 

 +  2��
�〈 �(��

�), � − ��
�〉 +  2��

�〈 �(��
�), ��

� − ��
�〉 

                   = ‖�� − �‖� − ‖�� − ��
�‖�   +  2��

�〈 �(��
�)− �(��

�)+ �(��
�), � − ��

�〉 

 +  2��
�〈�(��

�), ��
� − ��

�〉 + 2��
�〈 �(��

�)− �(��
�)+ �(��

�), � − ��
�〉 

 + 2��
�〈 �(��

�), ��
� − ��

�〉 

= ‖�� − �‖� − ‖�� − ��
�‖� + 2��

�〈 �(��
�)− �(��

�), � − ��
�〉 +  2��

�〈�(��
�), � − ��

�〉 

    + 2��
�〈 �(��

�)− �(��
�), � − ��

�〉 + 2��
�〈 �(��

�), � − ��
�〉  + 2��

�〈�(��
�), � − ��

�〉 

 +  2〈 ��
��(��

�)+ ��
��(��

�), ��
� − ��

�〉 

≤ ‖�� − �‖� − ‖�� − ��
�‖� + 2��

�〈 �(��
�), � − ��

�〉 +  2��
�〈�(��

�), � − ��
�〉 

 + 2〈 ��
� �(��

�)+ ��
��(��

�), ��
� − ��

�〉 

       = ‖�� − �‖� − ‖�� − ��
�‖� +  2〈��

��(��
�)+ ��

��(��
�), � − ��

�〉 

 + 2〈��
��(��

�)+ ��
��(��

�), ��
� − ��

�〉 

= ‖�� − �‖� − ‖�� − ��
� + ��

� − ��
�‖� + 2〈��

��(��
�)+ ��

��(��
�), ��

� − ��
�〉 

       = ‖�� − �‖� − ‖�� − ��
�‖� − ‖��

� − ��
�‖� − 2〈 �� − ��

�, ��
� − ��

�〉 

+ 2〈��
��(��

�)+ ��
��(��

�), ��
� − ��

�〉 

                   = ‖�� − �‖� − ‖�� − ��
�‖� − ‖��

� − ��
�‖� 

 + 2〈��
��(��

�)+ ��
��(��

�)+ ��
� − ��, ��

� − ��
�〉.                                                 (14) 

  
Using equation (6), we have 
 
 〈��

��(��
�)+ ��

��(��
�)+ ��

� − ��, ��
� − ��

�〉 = 〈�� − ��
��(��

�)− ��
��(��

�)− ��
�, ��

� − ��
�〉 

 = 〈 �� − ��
��(��

�)− ��
��(��

�)− ��
�, ��

� − ��
�〉 

   + 〈 ��
��(��

�)+ ��
��(��

�)− ��
��(��

�) 

   − ��
��(��

�), ��
� − ��

�〉 

  ≤ ��
�〈 �(��

�)− �(��
�), ��

� − ��
�〉 

    +  ��
�〈 �(��

�)− �(��
�), ��

� − ��
�〉.           (15) 

 
Using Cauchy-Schwarz inequality and inequality (15), we have 
 

〈�� − ��
��(��

�)− ��
��(��

�)− ��
�, ��

� − ��
�〉 ≤ ��

�‖�(��
�)− �(��

�)‖ ‖��
� − ��

�‖ 

+ ��
�‖�(��

�)− �(��
�)‖‖��

� − ��
�‖. 
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Using Lipschitz continuity of �, �, �� and ��, the above inequality becomes 
 

〈�� − ��
��(��

�)− ��
��(��

�)− ��
�, ��

� − ��
�〉 ≤ ��

��� ��‖�� − ��
�‖‖��

� − ��
�‖ 

     + ��
�����‖�� − ��

�‖‖��
� − ��

�‖ 

= (��
����� + ��

�����)‖�� − ��
�‖ 

 ‖��
� − ��

�‖.             (16) 

Using (16), the inequality (14) becomes 
 

‖��
� − �‖� ≤ ‖�� − �‖� − ‖�� − ��

�‖� − ‖��
� − ��

�‖� 

                                                                           + 2(��
����� + ��

�����)‖�� − ��
�‖‖��

� − ��
�‖.          (17) 

             Now 

0 ≤   �(��
����� + ��

�����)‖�� − ��
�‖ − ‖��

� − ��
�‖ �

�
 

= (��
����� + ��

����� )�‖�� − ��
�‖� + ‖��

� − ��
�‖� 

− 2(��
����� + ��

�����)‖�� − ��
�‖‖��

� − ��
�‖,              (18) 

or 

2(��
����� + ��

�����)‖�� − ��
�‖‖��

� − ��
�‖ ≤ (��

����� + ��
�����)�‖�� − ��

�‖� 

+ ‖��
� − ��

�‖�.              (19) 

Therefore, inequality (17) becomes 
 

‖��
� − �‖� ≤ ‖�� − �‖� − ‖�� − ��

�‖� − ‖��
� − ��

�‖� + (��
����� + ��

�����)�‖�� − ��
�‖�

+ ‖��
� − ��

�‖� 

 = ‖�� − �‖� − ‖�� − ��
�‖� + (��

����� + ��
�����)�‖�� − ��

�‖� 

 = ‖�� − �‖� − ‖�� − ��
�‖� (1 − (��

����� + ��
�����)� ).                 (20) 

 
Since ��

����� + ��
����� ≤  1,  we have ‖��

� − �‖� ≤ ‖�� − �‖�. Therefore, � ∈ �� .  Consequently 

� ⊆ ���
�  for all � ≥ 1. 

Applying mathematical induction, we then show that sequence {��} is well defined. Clearly, 

� ⊆ ��� and � ⊆ �� = �, so it follows that � ⊆ ��� ∩ �� and therefore �� = ����∩��(��) is well 

defined. Now let � ⊆ ����� ∩ ���� for some � > 2 and let �� = ������∩����(��).  Now we have 

� ⊆ ��� and for any � ∈ �, it follows from the property of projection operator that  
 

〈 �� − ��, � − ��〉 = 〈 �� − ������∩����(��), � − ������∩����(��)〉 ≤  0. 
 
This implies that � ∈ ��. Therefore, � ⊆ ��� ∩ �� for any � ≥ 1. Hence the sequence {��}  is well 

defined. 
 
Step 2.  The sequences {��}�∈�, {��

�}�∈� and {��
�}�∈� are bounded. 

 
Since ���� = ���∩ ��(��), we have, for any � ∈ �� ∩ ��,  
 

‖� ��� − ��‖ ≤ ‖� − ��‖.                 (21) 
 
Hence {��}�∈� is bounded. From the definition of ��, we have �� = ���(��). Since ���� ∈  ��, 

it follows from (7) that 
 

‖���� − ��‖� + ‖�� − ��‖� ≤ ‖���� − ��‖�.              (22) 
 
Thus, the sequence ‖�� − ��‖�∈� is increasing and bounded, and hence convergent. Also,  
 

 ����→�‖���� − ��‖ = 0.                  (23) 
 
Since ���� ∈  ��

�,  we have 
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‖��
� − ��‖ ≤ ‖�� − ����‖,               (24) 

and therefore,  

 ����→�‖��
� − ��‖ = 0, ��� � = 1,2, ⋯ , �.               (25) 

 
Thus, {��

�} is a bounded sequence for each � = 1,2, ⋯ , �.  It follows from (20) that 
  
‖�� − ��

�‖� (1 − (��
����� + ��

�����)� ) ≤ ‖�� − �‖� − ‖��
� − �‖�  

            ‖�� − ��
�‖� ≤  (1 − (��

����� + ��
�����)�)�� (‖�� − �‖� 

 − ‖��
� − �‖�) 

        =  (1 − (��
����� + ��

�����)�)�� (‖�� − �‖ + ‖��
� + �‖) 

              (‖�� − �‖ − ‖��
� − �‖) 

 ≤  (1 − (��
����� + ��

�����)� )��(‖�� − ��
�‖) 

 (‖�� − �‖ + ‖��
� − �‖ ).                (26) 

 
Now using (25), condition (i), and the fact that {��}�∈� and {��

�}�∈� are bounded, we have  
 

 ����→�‖�� − ��
�‖ = 0, ��� ��� � = 1,2, ⋯ , �.             (27) 

 
Therefore, {��

�} is also bounded. 
 
Step 3.  Any weak limit point of the sequences {��}�∈�, {��

�}�∈� and {��
�}�∈� belongs to �. 

             
Since  {��}  is bounded, there exists a subsequence  {���}�∈ �  of  {��}  which converges 

weakly to �∗ . So it follows from (27) that there exists a subsequence  ��
�

�� �
�∈�

of  {��
�} which 

converges to �∗  for each � = 1,2, ⋯ , �. Next, we show �∗ ∈ �.  Let ��  and ��  be the mappings 
defined by  

 ��(�) = �
��(�)+ ���

(�)  � ∈ ��;

∅                           � ∉ ��,
                  (28) 

and  

��(�) = �
��(�)+ ���

(�)  � ∈ ��;

∅                           � ∉ ��,
                  (29) 

 
where ���

(�), ���
(�) are normal cones of  ��, �� respectively at � ∈  �� ∩ ��. Since �� and �� are 

maximal monotone mappings, then from Theorem 5 of Rockafellar [15], ��, ��  are maximal 

monotone operators and ��
��(0)∩ ��

��(0) = �����(��, ��, ��).  
Let  (�, ��) ∈  ����ℎ �� , (�, ��) ∈ ����ℎ ��  with  � ∈  �� ∩ �� . Let �� ∈ ��(�)  and �� ∈

��(�). Since �� ∈  ��(�) = ��(�)+ ���
(�), we get �(��)− �(��) ∈  ���

(�) and for t� ∈ T�(v) =

B�(v)+ N��
(v) , we get �(��)− �(��) ∈  ���

(�) . Since �
�

�� ∈ �� ∩ ��,  we obtain 〈 �(��)−

�(��), � − �
�

��〉 ≥  0  and 〈 �(��)− �(��), � − �
�

��〉 ≥  0,  and since we have �
�

�� = ���
(��� −

�
�

���(�
�

��)− �
�

���(�
�

��)), we obtain that  
 

〈 ��� − �
�

�����
�

��� − �
�

�����
�

��� − �
�

��, � − �
�

��〉 ≤  0, 

     〈 ��� − �
�

��, � − �
�

��〉 − �
�

��〈 ���
�

���, � − �
�

��〉 − �
�

��〈 ���
�

���, − �
�

��〉 ≤  0, 

 〈  
��� − �

�

��

�
�

���
�

��
, � − �

�

��〉 − 〈 ���
�

���, � − �
�

��〉 −
�

�

��

�
�

��
〈 ���

�

���, � − �
�

��〉 ≤  0, 

   〈  
�

����
�

��

�
�

��
�

�

��
, � − �

�

��〉 − 〈 ���
�

���, � − �
�

��〉 − 〈 ���
�

���, � − �
�

��〉 ≤  0.   (30) 
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           In view of the monotonicity of the mappings ��, ��, � = 1,2, ⋯ , �, we see that 
 
〈 �(��)+ �(��), � − �

�

�� 〉 ≥  〈 �(��)+ �(��), � − �
�

�� 〉  

≥ 〈 �(��)+ �(��), � − �
�

�� 〉 +  〈 
��� − �

�

��

�
�

���
�

��
, � − �

�

��〉  

    − 〈 ���
�

���, � − �
�

��〉 − 〈 ���
�

���, � − �
�

��〉 

= 〈 �(��)− ���
�

���, � − �
�

��〉 + 〈 ���
�

��� − ���
�

���, � − �
�

��〉 

+ 〈 �(��)− ���
�

���, � − �
�

��〉 + 〈 ���
�

��� − ���
�

���, � − �
�

��〉 

   + 〈 
�

����
�

��

�
�

��
�

�

��
, � − �

�

��〉  

                               ≥ 〈 �(�
�

��)− �(�
�

��), � − �
�

��〉 + 〈 �(�
�

��)− �(�
�

��), � − �
�

��〉 

+  〈  
�

����
�

��

�
�

��
�

�

��
, � − �

�

��〉.               (31) 

 
From the Cauchy-Schwarz inequality, we have 
  

〈 �(��)+ �(��), � − �
�

�� 〉 ≥ − (‖���
�

��� − ���
�

���‖‖� − �
�

��‖ + ‖���
�

��� − ���
�

���‖‖� − �
�

��‖ 

   +
‖�

����
�

��
‖

��
‖� − �

�

��‖).              (32) 
 
Since ��, ��, �and � are Lipschitz continuous, the above inequality becomes 

 〈 �(��)+ �(��), � − �
�

��〉 ≥  − (����‖��� − �
�

��‖ + ����‖��� − �
�

��‖ +
‖��� − �

�

��‖

��
(‖� − �

�

��‖) 

        =  − �( ����‖��� − �
�

��‖ + ����‖��� − �
�

��‖ +
‖�

����
�

��
‖

��
),           (33) 

 
where � =  ����∈� ��� − �

�

���� .  Taking � → ∞  and using the fact that  ��� − �
�

����
�∈�

is 

bounded, we see that 〈 �(��)+ �(��), � − �∗〉 ≥  0.  Using maximal monotonicity of �� , we have 

�∗ ∈  ��
��(0) = �����(��, ��, ��).  Hence �∗ ∈  �.  

 
Step 4.  The sequences {��}�∈�, {��

�}�∈� and {��
�}�∈� converge strongly to ��(��). 

            
One can prove this by following the same arguments as used in claim 3.10 of Theorem 3.6 

of Censor et al. [6] and by Kadec-Klee property. This completes the proof.   ∎ 
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