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INTRODUCTION 
 

Let 
0 nn
a



  be a series of real or complex numbers with partial sums ( )ns . If a series is 

convergent, then it is summable to the same sum by a regular summability method. The converse of 

this statement is not always true. However, under certain supplementary condition(s) the converse 

does hold. Such condition(s) is called Tauberian condition(s) with respect to the summability 

method in question and the resulting theorem is said to be a Tauberian theorem.  

A Bürmann series is a series representation of the form 

                                                0

( ) [ ( )]k
k

k

f z b h z




                                                             (1) 

where f and h  are any given functions. It was presented by Whittaker and Watson [1] in their study 

of analytic function theory. Later, this notion was extended to the probability theory by King [2]. 

Besides, King [3] used Bürmann series to define summability matrices that satisfy the Silverman-

Toeplitz theorem conditions of regularity.  

On the other hand, Patterson et al. [4] extended the discrete power series method of Watson 
[5] by considering the Bürmann series (1), where ( )kb  is a sequence of non-negative numbers such 

that 0 0b   and  

0

n

n k
k

B b


    as n   
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Definition 1.  Suppose that  

0

1
( ) [ ( )]

( )
k

s n k k n
kn

f z s b h z
f z





   

exists for each 0n  , where 
0

( ) [ ( )]k
n k n

k

f z b h z




  and ( ) 1nh z    If  

lim ( )s n
n

f z 


 , 
 
then we say that ( )ns  is summable to   by the discrete Bürmann power series ( )BP method and we 

write ( )n Bs P . 
 
 Some of the most important summability methods such as discrete power series, logarithmic 

power series, Abel and (�, �) methods [6] can be obtained as special cases of the Bürmann power 

series method. Additional results on the Bürmann power series can be found in the work of Sansone 

and Gerretsen [7] and Patterson and Sen [8]. 

Throughout this paper we denote a positive constant by M, which is possibly different at 

each occurrence. The symbols (1)na o  and (1)na O  mean respectively that 0na   as n   

and ( )na  is bounded. 

In this work our goal is to find conditions under which the convergence follows from 

summability by the discrete Bürmann power series method. In general, one might expect to require 

Tauberian conditions on both ( )nb  and ( ( ) )nh z    To answer this question we prove the following 

two Tauberian theorems. Our main results are inspired by the results by Ishiguro [9]. 
 

Theorem 1.  Let the series 
0 kk
a



 be summable to   by the discrete Bürmann power series 

method.  If the conditions 
 

(i) 
 

(1)
( )

n

n

B
O

f z


 
,   

(ii) 
 

(1)
1 ( )

n

n

b
O

h z


  
,   

(iii)  ( ( ) )nh z   decreases monotonically,   
 
and 

(iv) 

 

k
k

k

b
a o

B

 
  

 
as k   

are satisfied,  then 
0 kk
a 




   

 

Theorem 2.  Let the series 
0 kk
a



 be summable to   by the discrete Bürmann power series 

method.  If the conditions 
 

(i) (1)
( )

n

n

B
O

f z


 
,   

(ii) 
1

(1)
1 ( )n

O
h z

 
  

 

(iii) ( )nb  decreases monotonically,   
 
and 
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(iv) k
k

k

b
a o

B

 
  

 
as k   

are satisfied,  then 
0 kk
a 




   

 
DEFINITIONS AND NOTATIONS 
 

Assume that ( )np  is a sequence of non-negative numbers with 0 0p   and  

                                                           0

n

n k
k

P p n


                                                     (2)                                                        

Definition 2.  If  

0

1 n

n p k k
kn

p s
P

 


   

as n  , then we say that ( )ns  is summable to   by the weighted mean method ( )N p  and we 

write ( )ns N p  . 

Definition 3.  Assume that the power series 
0

( ) k
k

k

p x p x




  has radius of convergence =1 and  

                                                             0

1
( )

( )
k

s k k
k

p x p s x
p x





   

exists for each (0 1)x  . If  

1
lim ( )s
x

p x 


 , 
 
then we say that ( )ns  is summable to   by the power series method ( )P  and we write ( )ns P .  
 

If a sequence is convergent, then it is summable to the same limit by a regular summability 

method.  The above-mentioned ( )N p  and ( )P  methods are regular if (2) is satisfied. The discrete 

power series method ( )P  corresponding to ( )P  has been introduced by Watson [5] as follows: 
 
Definition 4.  Let the sequence ( )n  be a strictly increasing sequence of real numbers such that 

0 1   and n   as n   and
1: 1
nnx   .  Suppose that ( )s np x  exists for each 0n  . If 

  
lim ( )s n
n

p x 


 , 

then we say that ( )ns  is summable to   by the discrete power series method ( )P  and we write 

( )ns P .  
 

Note that ( )P  includes ( )P  and ( )BP includes ( )P . Eventually, ( )P  and ( )BP  inherit 

regularity from the underlying power series and discrete power series method respectively.  
Summability methods for power series and discrete power series have been extensively 

studied by Armitage and Maddox [10], Watson [11], Osikiewicz [12] and Çanak and Totur [13, 14]. 

Lately, Sezer and Çanak [15] have obtained conditions under which power series and discrete 

power series methods are equivalent. Besides, some summability methods for series of real numbers 

and fuzzy numbers have been studied by Et et al. [16] and Esi [17]. 

Note that our results extend those by Watson [11] for the discrete Bürmann power series 

method.  This clearly follows by choosing ( )n nh z z   and taking 
11
nnz    in Definition 1.  
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PROOFS OF TAUBERIAN THEOREMS 
 

Proof of Theorem 1.  We verify this theorem by showing that the following difference tends to 

zero as n  : 
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It suffices to show that 0I J   as n   Since ( ) 1k

nh z   , for I  we have 
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Since  

1 0k k

k

a B

b
 

  

 

by (iv), and the weighted mean method ( )N p  is regular, we have 0I   as n by (i).  Now, by 

fixing 0  , J  is considered. By (iv), there exists 0N  such that for 0k N , 
 

k
k

k

b
a

B
 . 

 
Assume that 0k n N    Then by (ii) and (iii), we have  
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Using (ii) and (iii), we have 
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Therefore, 0J   as n  . This completes the proof.  � 
 

Proof of Theorem 2.  As in the proof of Theorem 1, writing  
 
 ( )n s ns f z I J     
 
we obtain lim 0n I   by (i) and (iv).  

Next we estimate J . From (iv), we obtain 
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Hence  using (i) and (iii), we have 
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then we have 
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It suffices to show that 1 2 0S S   as n   For 1S , we get  
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by  (ii) and (iii).  For 2S , using  (ii) and (iii), we get  
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Therefore, 0J   as n   This completes the proof.  � 
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