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Abstract: The generalised order-k Pell-circulant sequence and the k-step Pell-circulant
sequence are defined by using the circulant matrix which is obtained from the
characteristic polynomial of the generalised order-k Pell sequence. Then the relations
among the elements of the sequences and generating matrices of the sequences are
obtained. Also, the cyclic groups which are generated by the generating matrices and the
auxiliary equations of the defined recurrence sequences are considered, and then the orders
of these groups are examined. Furthermore, the k-step Pell-circulant sequence is extended
to groups. Finally, the periods of the k-step Pell-circulant sequences in the generalised

quaternion group Q,, are obtained as applications of the results produced.
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INTRODUCTION AND PRELIMINARIES

Davis [1] defined the circulant matrix C, =[c,.j] , associated with the numbers

Cy5 Cys---5C,;, as follows:
Co G
G =)
C =
Ciz Cus
| Co1 G2

The (n—1)th degree polynomial P(x)=c,+cx+

G G
G G
CO cn—l
¢ G
n—1
cede, X

is called the associated polynomial

of the circulant matrix C,. More information on the circulant matrix C, can be found in the

literature [2-4].

Kilic and Tasci [5] defined the k& sequences of the generalised order-k Pell numbers as

follows:
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for n>0 and 1<i<k,
F;qi :2Pni4 +Pnl;2 +"'+F:1ifk >
with initial conditions

|1 ifm=1-i,
P = . forl-k<n<0,
0 otherwise,

where P’ is the nthterm of the ith sequence. If k=2, the generalised order-k Pell sequence,
{Pf} , is reduced to the usual Pell sequence, {P,}. When i =k, P’ is called the generalised -Pell

number. It is easy to see that the characteristic polynomial of the generalised order-k Pell sequence
is

f(x):xk —2x" =

Let the (n +k)th term of a sequence be defined recursively by a linear combination of the

preceding £ terms:

Ay =Co, TG A, o+ C 1A, 0,

where cj,c,,...,c, , are real constants. Kalman [6] derived a number of closed-form formulas for

the generalised sequence by the companion matrix method as follows:

00100
oo

000-- 01

[ €0 €1 € Cpp Gy | -

Then by an inductive argument he obtained that

aO an
a a
n 1 _ n+l
A] .=
a Ayir

Many of the numbers obtained by using homogeneous linear recurrence relations and their
miscellaneous properties have been studied by several authors [7-17] and the cyclic groups via
some special matrices have also been obtained [18-22]. The study of recurrence sequences in
groups began earlier by Wall [23], who investigated the ordinary Fibonacci sequences in cyclic
groups. Recently, the concept was extended to some special linear recurrence sequences [20-22, 24-
30]. In this present paper, the generalised order-k Pell-circulant sequence and the k-step Pell-
circulant sequence are defined by using the circulant matrix which is obtained from the
characteristic polynomial of the generalised order-k Pell sequence, and then the relations among the
elements of the sequences and generating matrices of the sequences are produced. Also, the

multiplicative orders of the circulant matrix C,,, and the k-step Pell-circulant matrix M, to modulo

+1
m are considered, and then the rules for the orders of the cyclic groups are obtained such that these
groups are generated by reducing these matrices modulo m. Furthermore, the k-step Pell-circulant
sequences in groups are defined, and then these sequences in finite groups are studied. Finally, the
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periods of the k-step Pell-circulant sequences in the generalised quaternion group Q,, for n>3 are

obtained.

THE PELL-CIRCULANT SEQUENCES
The circulant matrix for the polynomial f(x) can be written as
1 if (i=k+1,j=1) and (i+1=jsuchthat1<i<k),
Coor =6 | ooy =12 if (1=k.j=1),(i=k+1,j=2) and (i+2=such that1<i<k-1),
-1 otherwise.

For example, the matrices C, and C; are

-1 1 -2 111 2 -1
¢=|-2 -1 lland C;=|-1 -1 -1 1 -2
1 -2 -1 2 -1 -1 -1 1

The generalised order-k Pell-circulant sequence is defined by using the matrices C,,,
follows.
If k=2,
-2x,,+x,,—x,,, n=Ilmod3,
X, =4 X,,—X,_,—2x,,, n=2mod3, forn>3,

-X,,—2x,,+x 5, n=0mod3

where x;, =0,x, =0 and x, =1.

If £>3,
X T X T T X e T 2K, g X~ X s n=1mod (k + 1)’
_xn72 - xn73 -t 'xnfk+2 - 2'xn7k+1 + xnfk - xnfkfl - xn7k72 > n= 2 mOd (k + 1) >

X, ==X, pr = 2%, F X =X = = X, 2 n=k-2mod (k+1), for n>k+1,

2%, X, X, X s n=k-1mod (k+1),
xnfk + xnfkfl - xn72k+1 - xr172k H n= k mOd (k + 1)’
_‘xnfkfl - xnfku - xr172k+1 - ‘xn72k - xn72k71 > n= O mOd (k + 1)

where x, =x, =---x, =0 and x,,, =1.

For example, the generalised order-5 Pell-circulant sequence is

_xn—l - xn—Z - xn—3 - 2xn—4 + xn—S - xn—G’ n= 1 mOd 6’
=X, =X, 3 =2X, ,+X, s+X _—X, 5, n=2mod 6,
x’l — _'xn—3 - 2xn—4 + xn—S - 'xn—6 + xn—7 - 'xn—S’ n= 3 mOd 6’ fOI‘ n> 6 ,
22X X =X X =X —X n=4mod 6
n—4 n-5 n—6 n—7 n—8 n-9° 4
‘xn75 - xrkf) + xr177 - xnfS - xr179 - 2'xnflO’ n= 5 mOd 6’
=X, FX, =X, =X, g —2X, 0+ X, > n=0mod 6

as
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where x, =x, =---x;=0and x, =1.

For n20, by an inductive argument, (C,,,)" is obtained as

—xn(k+1)+k+1 Xotesyrk  Tnkeysh=1  ooo Xngan2  Knkeny+t ]
Xatksy+l  Xnkeiyrkel  Knhesk oo Tuansz  Lnke)2
" X (k+1)42 Xatesy+1 Xnlhalrk+r 0 Xor(k+1)+3
(Ck+1) = . . . (1)
Xoesyrk-t  Xnheyek=2  Xneiyrk=3 " Knke)shel  Lnk+)+k
L Xntesnyek Tnenyk-t Kneeyek-2 0 Kageeyrt Xagertyekan |

It is easy to see that (C,,) is a circulant matrix of order k+1 and

P(X)= X, 1 + Xy T+ X0, %" 18 the associated polynomial of the matrix (Cy,, )"

The k-step Pell-circulant sequence is defined by

Ay = 28, =g == A,y +a,, for n20, 2)
where a,=a,=---=a, ,=0,a, =1 and k >3. It is noted that the generating function of the k-step
Pell-circulant sequence {a,} is

k-1
x
g(x)=

T 241

By (2), a companion matrix can be written as

(2 -1 - -1 1
1 0 00
Mol ot 0

0 0-- 10

The matrix M, is said to be the k-step Pell-circulant matrix. It is clear that

an+k+l an+k
a a
n+k n+k—1
=M,
an+2 an+l

For n >k —1, by an inductive argument, (M . )" may be written as

Qv Qp = Gpp = =0y Qo =y 3= =0y " Qg =g Qg
n an+k—1 an - an+1 - an+k—2 an+1 - an+2 - an+k—2 o an+k—3 - an+k—2 an+k—2
(M) =| " . ! 3)
Ay Q=3 =4, A 3=, 4 g4, " a a a
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It can be easily seen that detM, = (—I)M. Now it is well known that the Simpson formula for a

recurrence sequence can be obtained from the determinant of its generating matrix. For example,
the Simpson formula of 3-step Pell-circulant numbers is

(anH )3 + (an+2 )2 an—l + an+3 (an )2 - 2an+2an+lan - an+3an+lan—l = 1 s

where n>2.

CYCLIC GROUPS VIA MATRICES C,,, AND M,
For a given matrix A:[ai]} of integers, A(mod m) means that the entries of 4 are
reduced modulo m. Let (A4) ={(A)n (mod m)‘nZO}. If ged(detd,m)=1, (4) is a cyclic

group. The cardinal of the set (A4) "is denoted by ‘(A}m‘ . Since detM, = (—l)k“, it is clear that the

set <M . >m is a cyclic group for every positive integer m . Similarly, the set <Ck+1>m is a cyclic group
if ged(detC,,,,m)=1.

Now the cyclic groups which are generated by the matrices C,,, and M, are considered.

Theorem 1. Let p be a prime and let <G>pa be any of the cyclic groups of <Ck+1>pa and <M ' >pa

(),

, then ‘<G>pv‘: o <G>p‘ for

such that aeN. If u 1is the largest positive integer such that ‘<G>p

, then

‘<G>p‘ =p ‘(Gu for every v>u . In particular, if ‘(Gu # ‘<G>

pZ
every v>2.

Proof. Consider the cyclic group <Mk>pa. Let ‘(Mk>pa

be denoted by h(p“). If

(M, )h(”"“) =] (mod p“”), then (M, )h(”w) =] (mod p“) where a is a positive integer and [ is a
kxk identity matrix. This means that h( p“) divides h( p““). Also, writing
p“)-p

(M, )h(” s (mij(”) : p“) and using the binomial expansion, (M, )h( is obtained as

R e
This yields that 4(p*") divides 2(p*)-p. Thus, h(p*")=h(p*) or h(p*")=h(p*)-p. It is
clear that h( p““) = h( p”)- p holds if and only if there is an ml,j(“) which is not divisible by p.
Since u is the largest positive integer such that h(p)= h( p" ), h( p" ) # h( p”“) . That is, there is

(u+l

an m; ) which is not divisible by p. Therefore, it is seen that h( p””) # h( p””) . The proof is

completed using an inductive method on u .
The proof for <Ck+1>pa is similar. O

Theorem 2. Let (G) be any cyclic groups of (C,,,) and (M,) and let m:ﬁpff,(tzl)

m
i=1

2
t

where p,’s are distinct primes. Then ‘<G>m‘ = lcm[<G>plq ,<G>p§2 ,...,<G>pt }
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m i

Proof. Let us consider the cyclic group <Ck+1> ; then gcd(detCkH,m):l. Let ‘(Ck+l>p?,‘:ﬂ. for

1<i<t and let ‘<Ck+l>m‘ =A.Then by (1), itis seen that

x =0mod p;" for 1< j<k,

Ak 1)
X, (ketyps = 1 mod p;
and
X ket = Omod m for 1< <k,
Xykeryskes = 1 mod 1.
These imply that x,, . =a-X, .., (teN) for 1<j<k+1. That is, (C,,, )ﬂ is of the form

a-(Cp, )A” for all values of i. Thus, it is verified that KC,MM equals the least common multiple of

‘<Ck+1>p;‘i

The proof for <M f >m is similar. 0

2

S.

It is well known that a sequence is periodic if, after certain points, it consists only of
repetitions of a fixed subsequence. The number of elements in the repeating subsequence is the
period of the sequence. A sequence is simply periodic with period k if the first k elements in the
sequence form a repeating subsequence.

Reducing the generalised order-k Pell-circulant sequence and the k-step Pell-circulant

sequence by a modulus m , the repeating sequences {xn (m)} and {an (m)} are obtained as

{xn(m)} = {xl(m), x,(m), xS(m),...,xj(m),...}

and
{an(m)} = {al(m), a,(m), aS(m),...,aj(m),...},

where x; (m)=x,(mod m) and a,(m)=a,(mod m). They have the same recurrence relation as in

the definitions of the generalised order-k Pell-circulant sequence and the k-step Pell-circulant
sequence respectively.

Theorem 3. The sequence {an (m)} is simply periodic for every positive integer m . Similarly, the
sequence {xn (m)} is a simply periodic sequence if ged(detC,,,,m)=1.

Proof. Let us consider the sequence {an(m)}. Suppose that Q:{(ql,qz,...,qk )‘ ql,qz,...,qk} are
integers such that 0<g,,q,,...,q, <m—1; then |Q|=m". Since there are m" distinct k-tuples of
elements of Z , at least one of the k-tuples appears twice in the sequence {an(m)}. Thus, the
subsequence following this k-tuple repeats; that is, the sequence {an(m)} is periodic. So if
a,(m)=a, (m), a,(m)=a,,(m), ..., a,,(m)=a,,(m) and i> j, then i= jmod k. From
the definition, it can be easily derived that

ai(m)zaj(m), al._l(m)zaj_l(m), S ai—(j—l)(m)Eaj—(j—l)(m):al(m)’

and this implies that the sequence {an (m)} is simply periodic.
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The proof for the sequence {xn (m)} is similar. 0
The periods of the sequences {a,(m)} and {x,(m)} are denoted by I!(m) and I} (m)
respectively. Then the following useful results from (1) and (3) are obtained respectively.

Corollary 1. i.If p is a prime such that ged(detC,,,, p) =1, then [{(p)= (k+1)"<ck+1>,,‘-
ii. 1(p)= ‘(Mk >p‘ for every prime p . 0

Let p be a prime and let
A(p“)z{x”(modp“):neZ,aZl, xF=-2x —x"‘z—---—x+1,k23}.

Then it is clear that the set A( p“) is a cyclic group. Now a relationship among the characteristic

equation of the k-step Pell-circulant sequence and the period (m) can be given by the following
corollary.

Corollary 2. Let p be a prime and let & € N . Then the cyclic group A( p“) is isomorphic to the
cyclic group <M i >pa . 0

THE K-STEP PELL CIRCULANT SEQUENCES IN GROUPS

Let G be a finite j-generator group and let X be the subset of GxGxGx---xG such that

J
(xl,xz,...,xj)eX if and only if G is generated by Xps Xyseees X5 (xl,xz,...,xj) is called a

generating j-tuple for G .

Definition 1. Let G = <X > be a finitely generated group such that X = {xl,xz,...,xj} . Then the k-
step Pell-circulant sequence in the group G is defined as follows.

If j=2,
b =x.,b,=x,,b,=(x, )71 (x, )72 yeoes b = (b, )’1...(bk72 )*‘ (b, , )*2
and
b =(5,)(b) (b)) (b)) form=1.
If />3,

(bl )71 (bZ )71 o (bi+n—2 )71 (bj+n_1 )72 if ] +n< k,
(bi+n—k )(bi+n—k+l )_1 "'(bi+n_2 )_1 (b,,r,,_1 )_2 if j+n>k

i J i+n

b=x,b,=x,,....,b,=x, and b, ={

forn>1.
The k-step Pell-circulant sequence of a group generated by x,,...,x; 1is denoted by
PC,(G;x,.....x;).

Theorem 4. Let G:<X > be a finite group such that X :{xl,xz,...,xj}. Then a k-step Pell-
circulant sequence in G is periodic. In particular, if k£ > j, then a k-step Pell-circulant sequence in
G is simply periodic.

Proof. Suppose that n is the order of G . Since there are n" distinct triples of elements of G, at
least one of the A-tuples appears twice in the sequence PC, (G; Xjyeour X j). Thus, consider the
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subsequence following this k-tuple. Because of the repeating, the sequence is periodic. Let k> ;.
Since the sequence PC, (G; Xjyeoer X j) is periodic, there exist natural numbers u and v, with u > v,

such that
b =b

url — Pvirs Dyp = 0050045

b b

u+k =

b

vtk *

By the defining relation of the k-step Pell-circulant sequence, it is known that

(bk+n )(anrk—l )2 (bn+k72 ) : '(b;m) = (bn) for j=2
and

bi+n (bi+n—1 )2 (bi+n—2 ) ’ .(an—kH) = (bi+n—k) fOI' ] 2 3 .
Therefore, b, =b,, and hence
bu—l = bv—l 4 bu—2 = b

LR ERE)

bu —(v—l) = bv—(v—l)

which implies that the sequence is simply periodic. 0
The period of the sequence PC, (G; xl,...,xj) is denoted by LPC, (G;xl,...,xj). From the

=b

19

definition it 1s clear that the period of PC, (G; xl,...,xj) depends on the chosen generating set and

the order in which the assignments of x,, x,,...,x, are made.

Now the periods of the k-step Pell-circulant sequences in the generalised quarternion group
Q,, is considered. The generalised quaternion group Q,, , (n > 3) is defined by the presentation

1

L 2 2 -
Q2n:<x’y"x _eﬂy =X ’y xy_x >'

Note that ‘an‘ =2",

x|=2""and |y|=4.

Theorem 5. The periods of the k-step Pell-circulant sequences in the generalised quaternion group

0, for the generating pair (x, y) are obtained as follows.

i. LPC3(Q2,,;x, y) =7.

ii. LPC,(Q,.;x,y)=2""1{(2) for k> 4.

Proof. This is proved by direct calculation. Note that (2)=7.

i. The sequence PC, (an 3 X, y) is

X, , x—ly—z e xy—l (xn—l )‘2 _ y—lx’ y(xn—l )‘1 (y—lx)‘2 — e (y_l)C)_l (yx)-2 _ x—zy,

y_l)c(yx)_1 ()c_zy)_2 =e, yx()c_zy)_1 =X, )c_zyex_2 =y, e)c_ly_2 =x"", ...,

which has period 7.
ii. If £ >4, then the sequence PC, (Qzﬂ;x, y) is

n-1 -1.3
X=X X =V, X=X L, X =) X 0,

_ A4

iy
x2i»l[’f(2)—k+4 =X

Ap_n 4i+l Ay i n—1
k-2 X =X ,...,

* =X > ik (2)43

soes X i) X =X

> ik (2)+1 x =X

> 2k (2)+2
where A4,,...,4,,,4,, are positive integers and 4, _, is an odd positive integer such that
ged( Ao A ss As 4y )=1. So the smallest integer i is needed such that 2""'|4i for n>3. If
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i=n-3, then it is obtained that Xper oy hes =T X T €0 Ny pog T Xyapii =Y and
X2 papes = x"". Since the cycle begins again with the (2”‘2 1k (2))nd element,
LPC,(Q,:x,y)=2"711(2). 0

Theorem 6. The periods of the k-step Pell-circulant sequences in the generalised quaternion group

Q,, for the generating pair ( y,x) are obtained as follows.
i. LPC,(Q,;y,x)=2""7.
ii. LPC, (0,33, x)=2"2-1}(2) for k24.

The proof is similar to that of Theorem 5 and is omitted.
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