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Abstract:  Local modelling techniques are useful for analysis of spatio-temporal data 

because of their ability to extract underlying patterns. We use geographically and temporally 

weighted regression (GTWR) to analyse the spatial and temporal characteristics of air quality 

in 67 Chinese cities. The method employs a two-step estimator to examine the relationship 

between the indices and the given climatic conditions in the cities. The simulation 

performance is satisfactory. The mean monthly air quality index (AQI) varies with the spatio-

temporal position when the level of the monthly precipitation and the mean monthly 

temperature are controlled at one station. The AQI is highest in northern China, moderate on 

the south-eastern coast and low in southern China. Cities in northern China, eastern coastal 

cities, north-eastern cities and the city of Urumqi have a maximum rate of change when the 

monthly precipitation increases by one unit. The monthly mean AQI of most cities in Anhui, 

Zhejiang and Jiangsu provinces exhibits the greatest decrease with an increase in the monthly 

average temperature when the monthly precipitation remains unchanged. 

 

Keywords:  GTWR model, two-step estimator, air quality, spatial and temporal air quality 

analysis, Chinese cities 

_________________________________________________________________________________ 
 
INTRODUCTION 
  

Air pollution is a serious threat to human health. The association between pollutant 

concentration and mortality and morbidity has been established in many studies [1-3]. 

Industrialisation and modernisation have compromised air quality and population health in many 

areas [4, 5]. The environment in many areas of China has been badly contaminated. Cities often 

have serious air pollution that exceeds reasonable health standards. Environmental protection has 

become more critical as the air pollution issue exacerbates. Air quality issues need to be better 

understood, especially in the context of climate change. Air pollution patterns are usually 
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heterogeneous in space as well as in time and can change rapidly based on geographical location, 

temporal scale and environmental factors [6, 7]. Air quality measurements allow the 

characterisation of local pollution levels, and the data can be used by authorities to justify the 

implementation of measures to protect human health.  

Several air quality indices are used worldwide. The air quality index (AQI), introduced by 

the US Environmental Protection Agency, is commonly used. The AQI is calculated using five 

major air-regulated pollutants: ground-level ozone, particle pollution (also known as particulate 

matter), carbon monoxide, sulfur dioxide and nitrogen dioxide [8]. Several European countries 

including Belgium, UK, France and Germany have introduced national air quality indices. The 

common air quality indices (CAQI) was developed as part of the CITEAIR project and has been 

operating via the Internet since 2006 [9]. Some studies have evaluated the factors that affect air 

quality and air circulation in Chinese cities using air pollution indices [10]. These studies have 

mainly focused on large cities such as Beijing and Lanzhou or small cities that were used in some 

analyses. Almost all existing studies using AQI refer to Chinese small cities [11].  

Most air pollution models are regression models or their extensions. In regression models 

data are assumed to be independent and uniformly distributed. However, air pollution features and 

their related causative factors are strongly spatially and temporally dependent and unstable. They 

have significant spatial heterogeneity. Local summary statistics and modelling methods have been 

used to explore the effect of spatial heterogeneity. Geographically weighted regression (GWR) is a 

common local smoothing method applied to explore the spatial heterogeneity of regressions. Under 

certain conditions, spatial heterogeneity can lead to spatial nonstationary. Lo [12] used GWR to 

estimate population size and found that the GWR model, which is local, can effectively deal with 

spatial nonstationary. The heterogeneity of a regression relationship can be described by allowing 

the parameters in the linear regression model to vary as unknown functions of the geographical 

location. The geographically and temporally weighted regression (GTWR) models are based on the 

GWR model. Spatial and temporal characteristics of data are used in GTWR models, which sets the 

stage for exploring the spatial nonstationary and temporal nonstationary of the regression.  

The objectives of the present study are to analyse the influence of precipitation and 

temperature on air quality using a GTWR model approach and to examine the relationship between 

the indices and the climatic conditions in the study locations in China.    
 

GTWR MODEL AND TWO-STEP ESTIMATOR 
 

GTWR Model 
 

Huang et al. [13] used spatial and temporal data and proposed the following GTWR model:  

   0
1

, , , , , 1,2, ,


    
p

i i i i j i i i ij i
j

y u v t u v t x i n                  (1) 

where  1 2; , , ,i i i ipy x x x  are observations of the response variable Y  and explanatory variables 

1 2, , , pX X X  at location  , ,i i iu v t  in the study region;  1,2, , i i n  represents error terms with 

means equal to zero and a common variance 2 ;   , , 0,1,2, , j i i iu v t j p  represents 1p  

unknown functions of geographical locations and observation times. 
 

Two-Step Estimator  
 

For convenience, the regression model (1) is rewritten as follows: 
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 
0

, , , 1,2, ,
p

i j i i i ij i
j

y u v t x i n 


    .                                      (2) 

We set 0 1ix  to obtain the intercept term  0 , ,i i iu v t . Here,  , ,i i iu v t  is any space-time cordinate 

point in ellipsoidal coordinates. Each regression coefficient function   , , 0,1,2, , j i i iu v t j p  

has continuous partial derivatives in the space position coordinates ,u v  and time coordinates t  in 

the model (2). The term  0 0 0, ,u v t  is any given point in the study area. 

 For each 0,1,2, , j p , we use the Taylor formula in the neighborhood of  0 0 0, ,u v t  and 

then have 

             0 0 0 0 0 0 0 0 0 0 0, , , , , , , ,    u v

j j j ju v t u v t u v t u u u v t v v     

                             
     0 0 0 0, ,t

j u v t t t  . 

At  0 0 0, ,u v t ,    0 0 0, ,u

j u v t ,    0 0 0, ,v

j u v t  and    0 0 0, ,t

j u v t represent partial derivatives of 

 , ,j u v t  for , ,u v t  respectively. According to the local linear fitting method in the varying 

coefficient model, we can obtain an approximate expression of iy , denoted as y , specific to the 

formula as 

             
    

0 0 0 0 0 0 0 0 0 0 0
0

0 0 0 0

, , , , , ,

, , , 1,2, , .

p
u v

i j j j
j

t

j ij i

y u v t u v t u u u v t v v

u v t t t x i n

  

 



    

   





 

Then the minimisation of the above formula can be expressed as 

                                                              
2

0 0 0
1

, ,
n

i i i
i

y y w u v t


                                                          (3)
 

where      2 2
0 0 0 0 0, , exp , 1,2,i h i iw u v t K d d h i n     , and  K 

 
is the

 
kernel function;

 
 

0 , 1,2,id i n   are the distances between  0 0 0, ,u v t  and  , ,i i iu v t , and
 
h

 
is the bandwidth. 

The weight matrix with Gauss kernel function and bandwidth 1h can be expressed as 

       
1 0 0 0 1 0 0 0 2 0 0 0 0 0 0, , , , , , , , , , , ,h nw u v t diag w u v t w u v t w u v t     

 1 2, , ,
T

nY y y y   

 

   

   

   
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00 00

, , ,

p p
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np np nn nn

x x u ux u ux

x x u ux u ux
X u v t

x x u ux u ux

 
 

 
  
 
  

 

 

     

 
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       

       

1 1 0 1 1 010 1 0 10 1 0

2 2 0 2 2 020 2 0 20 2 0

2 0 0 0

0 00 0 0 0

, , .

p p

p p

np n np nn n n n

x v v x t tx v v x t t

x v v x t tx v v x t t
X u v t

x v v x t tx v v x t t
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 

   
  
 
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 
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Then 

     0 0 0 1 0 0 0 2 0 0 0, , , , , , , ,X u v t X u v t X u v t     
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             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , , , , , , , ,u u

P PP u v t u v t u v t u v t u v t        

                                           0 0 0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , , , , , .
T

v v t t

P Pu v t u v t u v t u v t    
   

 
The solution of the least squares problem can be expressed in matrix form as 

 

                0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ˆ ˆ ˆ ˆˆ , , , , , , , , , , , , ,

T T T Tu v tP u v t u v t u v t u v t u v t     

           
1 1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , , ,T T
h hX u v t W u v t X u v t X u v t W u v t Y


      (4)      

where  

       0 0 0 0 0 0 0 1 0 0 0 0 0 0
ˆ ˆ ˆ ˆ, , , , , , , , , , ,

T

Pu v t u v t u v t u v t                                      (5) 

               0 0 0 0 0 0 0 1 0 0 0 0 0 0
ˆ ˆ ˆ ˆ, , , , , , , , , , ,

T
u u u u

Pu v t u v t u v t u v t                           (6) 

               0 0 0 0 0 0 0 1 0 0 0 0 0 0
ˆ ˆ ˆ ˆ, , , , , , , , , , ,

T
v v v v

Pu v t u v t u v t u v t                            (7) 

               0 0 0 0 0 0 0 1 0 0 0 0 0 0
ˆ ˆ ˆ ˆ, , , , , , , , , , ,

T
t t t t

Pu v t u v t u v t u v t      
                     

 (8) 
 
where (5) is the column vector determined by the estimated values of each regression coefficient 

function    , , 0,1,2, , j u v t j p at  0 0 0, , ,u v t and (6-8) are the column vectors determined by 

the estimated values of the partial derivatives about ,u v  and t  respectively.  

From (4) we can obtain 

         
1

1

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
ˆ , , ,0 ,0 ,0 , , , , , ,



   
   

T
p p p p hu v t I X u v t W u v t X u v t

 

                                           
10 0 0 0 0 0, , , , ,T

hX u v t W u v t Y                                                                      (9) 

           
1

1

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
ˆ , , 0 , ,0 ,0 , , , , , ,



   
   

u T
p p p p hu v t I X u v t W u v t X u v t  

                                             
10 0 0 0 0 0, , , , ,T

hX u v t W u v t Y                                                                  (10) 

           
1

1

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
ˆ , , 0 ,0 , ,0 , , , , , ,



   
   

v T
p p p p hu v t I X u v t W u v t X u v t  

                                             
10 0 0 0 0 0, , , , ,T

hX u v t W u v t Y                                                                  (11) 

           
1

1

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
ˆ , , 0 ,0 ,0 , , , , , , ,



   
   

t T
p p p p hu v t I X u v t W u v t X u v t

 

                                           
   

10 0 0 0 0 0, , , , ,T
hX u v t W u v t Y                                                                 (12) 

 
where 1pI  and 10 p  represent the 1p  order’s unit matrix and 1p  order’s zero matrix 

respectively. Let     0 0 0, , , , 1,2, ,  i i iu v t u v t i n ; it is then easy to estimate the coefficient 

function at each observation position using (9): 
 

        0 1
ˆ ˆ ˆ ˆ, , , , , , , , , , 

T

i i i i i i i i i p i i iu v t u v t u v t u v t   
 

                                                   
1

1

1 1 1 1,0 ,0 ,0 , , , , , ,


   
   

T
p p p p i i i h i i i i i iI X u v t W u v t X u v t  

                                                         
1

, , , , , 1,2, .T
i i i h i i iX u v t W u v t Y i n                          (13) 

Thus, the fitted value of dependent variables at  , ,i i iu v t
 
is 
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 
0

ˆ , ,
p

i j i i i ij
j

Y u v t X


  

 ˆ , ,T
i j i i ix u v t  

                                                 
1

1

1 1 1 1 1 1
,0 ,0 ,0 , , , , , ,



     
   

T T
i i i i h i i i i i ip p p

X X u v t W u v t X u v t  

   
1

, , , , , 1,2, ,T
i i i h i i iX u v t W u v t Y i n                                     (14) 

 
where  11, , , i i ipX x x  are the column vectors composed by 0iX  and the i th group observations 

of 1 2, , , pX X X . Then the fitted values of the dependent variables Y  at the observation positions 

are 

      1 2
ˆ ˆ ˆ ˆ, , , .

T

nY Y Y Y LY                                                       (15) 

Set 

     
1

1

, , , , , , , 1,2, ,T
i i i i h i i i i i iA X u v t W u v t X u v t i n


      

where  

          

          

          

1

1

1

1 1 1 1 1 1 1 11 1 1 1 1 1

2 2 2 2 2 2 2 21 1 1 1 1 1

1 1 1 1 1 1

,0 ,0 ,0 , , , ,

,0 ,0 ,0 , , , ,
.

, 0 ,0 ,0 , , , ,

T T
hp p p

T T
hp p p

T T
n n n n n h n n np p p

X A X u v t W u v t

X A X u v t W u v t
L

X A X u v t W u v t

     

     

     

 
 
 
 
 
 
 
 



 

 
Equation (15) shows that the local linear estimation is a linear estimation of the L  smooth 

matrix. Further, the residual vector of local linear estimation is 
 

   1 2
ˆˆ ˆ ˆ ˆ, , , ,

T

n Y Y I L Y                                              (16) 

and the residual sum of squares is 

   ˆ ˆ .
TT TRSS Y I L I L Y      

 
We obtain an estimation of the error variance   2iVar    as follows: 

    
2 ˆ ˆ

ˆ 
 

T

T
tr I L I L

 
  

=
   

    
.

TT

T

Y I L I L Y

tr I L I L

 

 
                                                     (17) 

 
The above method is termed the local linear estimation of the GTWR model. This estimation 

method not only provides the estimated values of the coefficient functions, but also generates 

estimated values of the partial derivatives of the coefficient functions about ,u v  and t . It is 

assumed that the functions  j  possess equivalent degrees of smoothness and can be 

approximated equally well in the same interval. Optimal estimators of the smooth functions are 

obtained using the two-step estimator method if the functions possess different degrees of 

smoothness, where the degree of smoothness means the changed degree of coefficient function in 

the defined domain. 
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Assume that  , ,p u v t  is smoother than the other functions. The initial step involves 

obtaining an initial estimate of    0 1, , , , , , pu v t u v t  . In this step the local linear estimation is 

used to generate the estimators of    0 1, , , , , , pu v t u v t  , as shown in (13). We set 

  
   

1

0

ˆˆ , , , , , 1,2, , .
p

i i j i i i ij p i i i ip i
j

y y u v t x u v t x i n  




       

In the second step a local least squares regression is fitted again by substituting the initial estimate 

in the local least squares problem. In this way a two-step estimator  ˆ , ,p u v t of  , ,p u v t  is 

obtained. 

          Specifically, we assume that  , ,p u v t  possesses a bounded second derivative so Taylor 

expansion can be used in the neighborhood of  0 0 0, ,u v t  as follows: 

 

                  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

, ,

, , , , , , , , .

p

u v t

p p p p

u v t

u v t u v t u u u v t v v u v t t t



   



     
 

 
The terms    0 0 0, ,u

p u v t ,    0 0 0, ,v

p u v t
 
and    0 0 0, ,t

p u v t  are partial derivatives of  , ,p u v t
 

about ,u v  and t  at  0 0 0, , ,u v t respectively.  

This naturally leads to the following weighted least squares problem: 
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We let  
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, 

 1,4 1, 0, 0, 0
T

e  and  1 2
ˆ ˆ ˆ ˆ, , ,

T

nY Y Y Y  . Minimising the weighted least squares problem about 

 , ,p u v t , we obtain the two-step estimator  ˆ , ,p u v t
 
of  , ,p u v t : 

 

           
2 2

1
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

           (18)
  

where  
2 0 0 0, ,hW u v t

 
is the weight matrix with the Gauss kernel function, and 2h is a bandwidth in 

the second step. 
 
Choosing Appropriate Bandwidth 
 

In the process of calibrating the GTWR model, the model can be studied using cross- 
validation [14, 15]. Suppose the predicted value of iy  is denoted as a function of  h. It can be 

written as    ˆ
i

y h  in GTWR, so the sum of the squared error can be written as 

     
2

1

ˆ, , ,
n

s t i s ti
i

CV h h y y h h




   
                                                 

(19)
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where 
2

s

h
h


 and 

2

t

h
h


 are the space and time bandwidth parameters respectively; 1h  and 2h  

can be calculated using cross-validation in the two-step estimator. 

Then we analyse the rationality of the cross-validation method and note that  
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where     ( )

ˆ ˆ, ( )s t i ii
y h h m X

 . Because i  and   ( )
ˆ ( )i i im X m X  are conditionally independ- 

ent,     ( )
ˆ ( ) =0i i i iE m X m X   and we have 
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Let  
2

( )
ˆ ( )i i iY m X be replaced with its mathematical expectation. Then 

    
22 1

ˆ, ( ) .s t i iCV h h E m X m X
n

    

 
The second term is the average of the mean squared error of each point, so we can use the cross-

validation method.    
 
DATA AND MODELLING            
 

Data and Pre-Analysis 
 

            Many factors such as precipitation, sunlight, temperature, atmospheric pressure, wind speed, 

relative humidity and pollutant emissions influence air quality. Generally, the AQI will be reduced 

with increases in temperature, atmospheric pressure and relative humidity when pollutant emissions 

remain constant. We have only considered the relationships among total monthly precipitation, 

mean monthly temperature and the mean monthly AQI. 

To get a uniform distribution in the geographical position, we uniformly chose 67 cities for 

study (Table 1) to ensure the data can roundly reflect, if any, the variation of air quality with the 

geographical area in China. We collected 12 months (January-December 2013) of relevant data, viz. 

average monthly AQI, monthly precipitation, mean monthly temperature, latitude and longitude. 

The average monthly AQI data were obtained from the China National Environmental Monitoring 

Centre [16], and the monthly precipitation and mean monthly temperature data were obtained from 

the China Meteorological Data Sharing Service System [17]. We used Google to find the location of 

each city by latitude and longitude. 
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Table 1.  Cities in China used as study sites   

No. Name No. Name No. Name No. Name 

1 Xingtai 19 Shijiazhuang 35 Baoding 52 Handan 

2 Tangshan 20 Beijing 36 Zhengzhou 53 Shenyang 

3 Harbin 21 Changchun 37 Wuhan 54 Chengdu 

4 Tianjin 22 Cangzhou 38 Nanjing 55 Changzhou 

5 Shaoxing 21 Changsha 39 Taiyuan 56 Yancheng 

6 Nantong 23 Huai’an 40 Jinhua 57 Dalian 

7 Jinan 24 Lianyungang 41 Hohhot 58 Xuzhou 

8 Hangzhou 25 Suzhou 42 Quzhou 59 Guiyang 

9 Shanghai 26 Nanning 43 Zhongshan 60 Wenzhou 

10 Dongguan 27 Guangzhou 44 Lishui 61 Zhuhai 

11 Shenzhen 28 Zhaoqing 45 Huizhou 62 Xiamen 

12 Suqian 29 Hengshui 46 Urumqi 63 Yinchuan 

13 Haikou 30 Hefei 47 Ningbo 64 Taizhou 

14 Fuzhou 31 Qinhuangdao 48 Taizhou 65 Zhoushan 

15 Langfang 32 Nanchang 49 Chengde 66 Lanzhou 

16 Xi'an 33 Zhangjiakou 50 Huzhou 67 Kunming 

17 Qingdao 34 Xining 51 Lhasa   
 

In January the Chinese cities located on the south-eastern coast and most southern cities had 

lower average monthly AQI values, indicating good air quality (Figure 1). The average monthly 

AQI values of cities located in east-central and northern China were higher, indicting a poorer air 

quality. In January the air quality in Beijing was much worse than during other months (Figure 2). 

The total monthly precipitation in most southern Chinese cities was relatively greater than 

that in inland cities as shown in Figure 3, where the box in the lower-left corner corresponds to the 

range of  1 , ,u v t  estimation. If its absolute value is larger, the influence of 1ix  on monthly 

precipitation is more important in the 67 cities. The rainfall in Hangzhou city was greatest in June 

and August as shown in Figure 4. 

Among the 67 Chinese cities studied, the average monthly temperature increased from north 

to south and from inland to coastal areas (Figure 5). Figure 6 shows the average monthly 

temperature in Lanzhou city. 
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Figure 1.  Average monthly AQI in 67 cities in January 

 

  
Figure 2.  Average monthly air quality in Beijing city 

 

 
 

Figure 3.  Total monthly precipitation (mm) in 67 cities in February 
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Figure 4.  Total monthly precipitation (mm) in Hangzhou city 

 

 
 

Figure 5.  Average monthly temperature (°C) in 67 cities in February 

 

  
Figure 6.  Average monthly temperature (°C) in Lanzhou city 
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Modelling 
 

Let Y represent the average monthly AQI, 1X the sum of monthly precipitation (mm) and 

2X  the average monthly temperature (°C). We applied the GTWR model to the observational data 

of 12 months and 67 cities; the model can be written as 
  

     0 1 1 2 2, , , , , , , 1, 2, 67,i i i i i i i i i i i i iY u v t u v t X u v t X i                        (20) 
 
where  0 , ,i i iu v t  is the basis of average monthly AQI,  1 , ,i i iu v t  represents the average 

monthly rate of AQI associated with the sum of monthly precipitation, and  2 , ,i i iu v t
 
indicates the 

average monthly rate of AQI associated with the average monthly temperature. 
 
SIMULATION AND ANALYSIS              
 

The First Step 
 

Using the significance test method of Cleveland et al. [18], Mei et al. [19] and Xuan et al. 

[20], we constructed the test statistic and obtained the global non-stationary-test p-value and the 

significance-test p-value of changes in each coefficient function in (19) through the third moment 
2  approximation. As shown in Table 2, p is the global non-stationary-test p-value of the 

regression model, and 0p , 1p  and 2p are the significance-test p-values of the regression cofficient 

functions 0 , 1  and 2  respectively, which reflects significant changes in the regression 

coefficients using the local linear estimation method. 
 

                Table 2.  Bandwidths and p-values obtained using local linear estimation 

sh  th  p  0p  1p  2p  

67.73 km 0.6801 month 1.31E-307 0.0000958 0.0002781 0.000233 

 

 Here, the kernel function is the Gaussian kernel function and all bandwidths are determined 

by the cross-validation method described in ‘Choosing Appropriate Bandwidth’ section. In Table 2 

the significance test results show that the global non-stationary-test p-values of the regression model 

and the significance-test p-values of the regression coefficient functions are very small 

(approximately 0). This indicates significant differences in the monthly average AQI, the monthly 

precipitation sum and the monthly average temperature in the 67 cities. In other words, the monthly 

precipitation sum and monthly average temperature have a significant influence on the monthly 

average AQI. 

Using the spatio-temporal data set and the results calculated by SAS software, we drew by 

means of Surfer (a software made by Golden Software) the 0 , 1  and 2  distribution maps of 67 

cities in February, which are shown in Figures 7-9 respectively. In Figure 7 the values of 0  less 

than 6 are mainly from southern locations and south-eastern coastal areas. These cities generally 

have sufficient rainfall and higher average temperatures or abundant forest cover. Thus, the 

distribution of the benchmark monthly average air index 0  is lowest on the southern coast, south-

eastern coast and south-western border, and gradually increases from these areas to northern China.  
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Figure 7. The 0  distribution of 67 cities in February 

 
Figure 8 shows that the 1  values of the 67 cities in February are mostly negative. Only 

seven cities (Nanning, Hohhot, Lanzhou, Xining, Lhasa, Kunming and Yinchuan) have positive 

values. Either the wind has a greater impact on these cities (such as Lanzhou) or they have 

significant forest coverage (such as Nanning). Although we did not consider the impact of factors 

such as wind on the AQI, the indices of the seven cities result in positive 1  values. Precipitation 

clearly has the largest impact on cities in north-eastern China including Jiangsu and Zhejiang 

provinces. It has less impact on the Yangtze River cities and most of the southern cities. This is 

mainly because industry is relatively developed and precipitation is relatively low in northern China 

and the north-eastern cities. On the whole, cities with adequate monthly rainfall along the Yangtze 

River and most of the southern cities have significantly high technological and industrial 

development with better and stable air quality, although considerable seasonal variation can 

increase the influence of precipitation. Therefore, it has less impact on AQI of the cities along the 

Yangtze River cities and most of the southern cities.  

 

  

Figure 8. The 1  distribution of 67 cities in February 
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Figure 9 shows the February distribution of 2  
in 67 Chinese cities. Cities where the average 

monthly temperature has the largest impact on the monthly AQI are in the eastern region, Yangtze 

River region, Tibet and Urumqi regions (temperature changes are more obvious in these cities), 

followed by those in the eastern coast and the south-eastern coastal areas. Cities in the southern area 

and Sichuan province have less impact on the average monthly air quality, mainly because the area 

temperature changes are more moderate. Northern and north-eastern cities are greatly influenced by 

rainfall, and the average monthly temperature of these cities has little impact on the average 

monthly AQI (greater than -0.079), but the index value remains negative. The 2  values for 

Lanzhou, Hohhot, Xining and Yinchuan are positive, indicating that in these cities the average 

monthly humidity is not the major factor affecting the AQI. We found that the impacts of the total 

monthly precipitation and the monthly average temperatures for these four cities are small and these 

are not the main factors. Wind as well as other factors might be important, but they are not part of 

this study. 

 

  

      Figure 9.  The 2  distribution of 67 cities in February 
                                                                   
The Second Step  
 

The second step of the two-step estimator selects the optimal smooth degree of variable 1X , 

which is the sum of monthly precipitation, based on the first step, which uses the local linear 

estimation. From the two-step estimator, the significance-test p-value of the regression coefficient 
function 1  is 6.702E-10, as shown in Table 3. Table 3 also states the significance-test p-value of 

the regression coefficient function 1  based on the first-step estimator to be 0.0002781, which is 

greater than the significance-test p-value from the second-step estimation. Thus, the two-step 
estimator is a better estimator of the coefficient function 1 . 

 

    Table 3.  Bandwidths and p-values based on two-step estimator 

 sh  th  p  
0p  1p  2p  

The first step 67.73 km 0.6801 month 1.31E-307 0.0000958 0.0002781 0.000233 

The second 
step 65.09 km 0.6396 month 0  6.702E-10  
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Figure 10.  The 1  distribution of 67 cities in February based on two-step estimator 

 
Figure 10 shows that the February 1  values of 67 cities obtained by the two-step estimation 

are all negative. Urumqi has the largest precipitation impact with a 0.1798 rate of change. When the 

monthly precipitation increases by one unit, the monthly average AQI decreases by 0.1798, while 

the average temperature remains unchanged. The possible reason that Urumqi has the largest 

February precipitation effect among the 67 cities is that it generates significant atmospheric 

pollution from coal burning. Inversion weather and the atmospheric stability of Urumqi in February 

are not conducive to the diffusion and dilution of polluted air [21]. However, precipitation has a 

large impact on the AQI of north-eastern, northern, eastern and most southern coastal cities, 

including Tibet. The rate of change is between -0.01931 and -0.01041. The effect of rainfall on the  

AQI of Xi'an, Lanzhou, Nanning and other mid-western and south-western cities is relatively small. 

Local factors may affect the AQI. For example, Nanning is greatly influenced by a ridge of high 

pressure in February [22]. Lanzhou is influenced by valley terrain conditions; temperature inversion 

conditions are stable and deep in February, and the wind has a relatively high impact on the AQI 

[23]. 

 
CONCLUSIONS  
 

Our analysis has demonstrated that spatio-temporal heterogeneity prevails in real air quality 

data, and these data change over both time and space in the study areas. The GTWR approach can 

simultaneously deal with both spatial and temporal heteroscedasticity and produces good results in 

handling the relationships among precipitation, temperature and air quality. This study shows that 

cities in northern China generally have the highest air quality. There are ten cities with the worst air 

quality; seven are located in Hebei province. These data are consistent with our simulation results. 

The monthly average AQI varies with the mean monthly temperature in each city. When the  

monthly precipitation increases by one unit, the northern Chinese cities, eastern coastal cities, north-

eastern cities and Urumqi have maximum rates of change. The simulation results are consistent with 

the results found in real life and those from pre-analysis. The GTWR model is useful for simulation 

and analysis of the distribution characteristics of the Chinese AQI.  
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