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Abstract: Local modelling techniques are useful for analysis of spatio-temporal data
because of their ability to extract underlying patterns. We use geographically and temporally
weighted regression (GTWR) to analyse the spatial and temporal characteristics of air quality
in 67 Chinese cities. The method employs a two-step estimator to examine the relationship
between the indices and the given climatic conditions in the cities. The simulation
performance is satisfactory. The mean monthly air quality index (AQI) varies with the spatio-
temporal position when the level of the monthly precipitation and the mean monthly
temperature are controlled at one station. The AQI is highest in northern China, moderate on
the south-eastern coast and low in southern China. Cities in northern China, eastern coastal
cities, north-eastern cities and the city of Urumqi have a maximum rate of change when the
monthly precipitation increases by one unit. The monthly mean AQI of most cities in Anhui,
Zhejiang and Jiangsu provinces exhibits the greatest decrease with an increase in the monthly
average temperature when the monthly precipitation remains unchanged.

Keywords: GTWR model, two-step estimator, air quality, spatial and temporal air quality
analysis, Chinese cities

INTRODUCTION

Air pollution is a serious threat to human health. The association between pollutant
concentration and mortality and morbidity has been established in many studies [1-3].
Industrialisation and modernisation have compromised air quality and population health in many
areas [4, 5]. The environment in many areas of China has been badly contaminated. Cities often
have serious air pollution that exceeds reasonable health standards. Environmental protection has
become more critical as the air pollution issue exacerbates. Air quality issues need to be better
understood, especially in the context of climate change. Air pollution patterns are usually
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heterogeneous in space as well as in time and can change rapidly based on geographical location,
temporal scale and environmental factors [6, 7]. Air quality measurements allow the
characterisation of local pollution levels, and the data can be used by authorities to justify the
implementation of measures to protect human health.

Several air quality indices are used worldwide. The air quality index (AQI), introduced by
the US Environmental Protection Agency, is commonly used. The AQI is calculated using five
major air-regulated pollutants: ground-level ozone, particle pollution (also known as particulate
matter), carbon monoxide, sulfur dioxide and nitrogen dioxide [8]. Several European countries
including Belgium, UK, France and Germany have introduced national air quality indices. The
common air quality indices (CAQI) was developed as part of the CITEAIR project and has been
operating via the Internet since 2006 [9]. Some studies have evaluated the factors that affect air
quality and air circulation in Chinese cities using air pollution indices [10]. These studies have
mainly focused on large cities such as Beijing and Lanzhou or small cities that were used in some
analyses. Almost all existing studies using AQI refer to Chinese small cities [11].

Most air pollution models are regression models or their extensions. In regression models
data are assumed to be independent and uniformly distributed. However, air pollution features and
their related causative factors are strongly spatially and temporally dependent and unstable. They
have significant spatial heterogeneity. Local summary statistics and modelling methods have been
used to explore the effect of spatial heterogeneity. Geographically weighted regression (GWR) is a
common local smoothing method applied to explore the spatial heterogeneity of regressions. Under
certain conditions, spatial heterogeneity can lead to spatial nonstationary. Lo [12] used GWR to
estimate population size and found that the GWR model, which is local, can effectively deal with
spatial nonstationary. The heterogeneity of a regression relationship can be described by allowing
the parameters in the linear regression model to vary as unknown functions of the geographical
location. The geographically and temporally weighted regression (GTWR) models are based on the
GWR model. Spatial and temporal characteristics of data are used in GTWR models, which sets the
stage for exploring the spatial nonstationary and temporal nonstationary of the regression.

The objectives of the present study are to analyse the influence of precipitation and
temperature on air quality using a GTWR model approach and to examine the relationship between
the indices and the climatic conditions in the study locations in China.

GTWR MODEL AND TWO-STEP ESTIMATOR
GTWR Model

Huang et al. [13] used spatial and temporal data and proposed the following GTWR model:
y 180 uz’vt’tt ZIB ul,Vl,tl X-+81., i:1,2,"',}’l (1)

where ( Vi Xy lz,---,xip) are observations of the response variable ¥ and explanatory variables
Xl,Xz,---,Xp at location (ui,v,.,t,.) in the study region; 8,.(1'=1,2,---,n) represents error terms with

means equal to zero and a common variance o’ ; ﬂ (u V. t)( j=0,12,---, p) represents p +1

27

unknown functions of geographical locations and observation times.

Two-Step Estimator

For convenience, the regression model (1) is rewritten as follows:
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Zﬂ u vl,tl X; + &, i=12,---,n. (2)

127 27

We set x,, =1 to obtain the intercept term /3, (u,,v,.t,). Here, (u,,v,,t,) is any space-time cordinate
point in ellipsoidal coordinates. Each regression coefficient function ﬂj (ui,vi,ti)( j=0,12,---, p)
has continuous partial derivatives in the space position coordinates u, v and time coordinates ¢ in
the model (2). The term (uo, vo,to) is any given point in the study area.

For each j =0,1,2,---, p, we use the Taylor formula in the neighborhood of (uo,vo,to) and
then have

B (u,v,t) = B (uo,vo, )+,6’A(”) (MO,VO,tO)(M—MO)+,Bj(v) (uo,vo,to)(v—vo)
+ﬂ (uo,vo, )(t—to).
At (g veo1y) 5 B (ugsvpoty) s B (g, vety) and B, (uy,vy,1, ) represent partial derivatives of
B (u,v,t) for u, v, t respectively. According to the local linear fitting method in the varying
coefficient model, we can obtain an approximate expression of y,, denoted asy, specific to the
formula as
yi:io(ﬂj(MO’vb’ )"‘ﬂ (”mvm )(”_”o)"'ﬂj(V)(”o:vmto)(v_vo)
=

+ﬂj(t)(uoavoato)(t—to))xij+8i, i=12,---,n.

Then the minimisation of the above formula can be expressed as
Z(y, y,) (uoavoat ) 3)
i=1

where wi(uo,vo,to):Kh(dol.):exp{—dgl./hz},izl,l---n, and K(-) is the kernel function;

d,,i=12,---n are the distances between (uo,vo,to) and (u Vi, ) and / is the bandwidth.

0i° 127

The weight matrix with Gauss kernel function and bandwidth 4, can be expressed as
w, (ug,vy,1,) = a’iag[w1 (1, Vo 1y ) Wy (s Vsty )seo s W, (uo,vo,to)],

Y=(y1,y2,“'y,,)Ta

X0 X, X (u —uy) x,, (u, —uy)
X, (1, vp0ty) Xy Xy, Xy (uy —uy) Xy, (1, —u,) ’
| X0 X, X, (u, —u,) x,, (u, —u,) |
_xm (v1 vo) X, (v1 vo) X0 (z‘1 —to) X, (tl to)_
X, (1, v001,) = X, (v, =V, X, (v =v) x(t—1,) X, (4, —1,)
| X0 (vn —VO) X (vn —vo) X0 (tn —to) X (tn —to)_

Then
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P(”O’VO’ ) [ﬂo(uo,vo,t )" ﬂP(uO’VO’ ):Bo (”o’voa )o"»ﬂp(u)(“oavoato)’
ﬂ()(uo,vo, ), ﬂp (uo,vo,to),ﬂo( (uo,vo, ), ,BP (uo,vo, )T

The solution of the least squares problem can be expressed in matrix form as

f)(uoavoato)=(ﬁ(u09v09t0)T’ﬁ(u)(uO’V09t0)Taﬂ()(u09v0’ ) ﬂo (u()’v()’ )T)
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-
:[XT (tgsVosto )WV, (uo,vo,tO)X(uo,vo,to)} X7 (g, v0,10) W, (195 vesty )Y, (4)

where

(s NG N T
ﬂ()(MO’VO’tO):[IBO()(uO’VO’tO)’ﬂl( (MO,VO, /BP (uoav()a ):| s

)
(6)
(7
®)

where (5) is the column vector determined by the estimated values of each regression coefficient
function ﬂj (u,v,t)( j=0,12,---, p) at (uo,vo,to), and (6-8) are the column vectors determined by

the estimated values of the partial derivatives about u,v and ¢ respectively.
From (4) we can obtain

Ié(u()’v()’to):(1p+1’0p+1’0p+l’0p+1)|:XT (”oavo’to)Wh, (uoavoato)X(”oavoato)}
X’ (uo,vo,to)Wh (uo,vo,tO)Y,

>Vl )W, (s Vi1, )X(uo,vo,to)]_1
XT(uO,vo,t) (uo,vo, )Y,

-1

A

IB(H) (uoavo’tO) :(0p+1’1p+1’ p+12 P+1)[

A

“
)
B (10 0010) = (0,060,000, V[ X7 (105t )W, (11t ) X (11, vty) |
X (ty, Vst )W, (tg5Vs10) Y
(

A

IB(t)(uO’VO’tO):(0p+1’0p+l’ Pl p+l)[ Uy, Vo, Ly ) (uoavoat )X(uoavoato)]_l
X’ (uo,vo,tO)I/Vh1 (uo,vo,to)Y,

where [ and 0

p+l p+l

)

(10)

(11)

(12)

represent the p+1 order’s unit matrix and p+1 order’s zero matrix

respectively. Let (uo,vo,to):(ui,vi,ti)(i:1,2,---,n); it is then easy to estimate the coefficient

function at each observation position using (9):

,B(u vl,tl) (,Bo(u an,) ﬂl(u Vnt,) ,B (u vl,t,))T

:(Ip+1’0p+1’0p+1’0p+1)[XT (ui’Vi’ti)VVhl (ui’vi’ti)X(ui’Vi’ti)]%

XT(u 2 t)W (u V. t)Y i=1L2,---n

27 27

Thus, the fitted value of dependent variables at (u Vit )

27

(13)
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)4
Z u vl,tl i

A

=X IBj (ui’vi’ti)

-1
:(‘Xir’01x(p+1)’le(p+1)>01x(p+1))[XT (ui’vi’ti)VVhl (”iovpti)X(”nVnti)]
XT(u V. t)Whl (ui,vl.,tl.)Y, i=12,---n, (14)
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where X, = (Lxm""x,-p) are the column vectors composed by X, and the ith group observations

of X, X,,---,X,. Then the fitted values of the dependent variables Y at the observation positions

are
V=(¥.07,) =LY, (15)
Set
A, :[XT (ul.,vl.,ti)Whl (ui,vl.,ti)X(ul.,vl.,z‘i)]i1 , i=1,2,--n,
where
(X720, O Oy ) AX (178, (0]

(XT 0 0 0 )AX (tys vy, 1y )W, (14 v501,) .

2 2 I p+1)? Vx(p+1)? Vlx( p+1)

_(XnT’01><(p+1)’01><(p+1)’01>< p+1))A X (un’vn’t )VI/h, (un’vn’tn)

Equation (15) shows that the local linear estimation is a linear estimation of the L smooth
matrix. Further, the residual vector of local linear estimation is

§=(8,6y,6,) =Y -Y=(1-1)Y, (16)

’n

and the residual sum of squares is
RSS=&"¢=Y"(I-L) (I-L)Y.

We obtain an estimation of the error variance Var(gi) =0’ as follows:

7 ztr((l L)T(I L))
Y'(I-L) (1-L)Y

(17)

The above method is termed the local linear estimation of the GTWR model. This estimation
method not only provides the estimated values of the coefficient functions, but also generates
estimated values of the partial derivatives of the coefficient functions about u,v and ¢. It is

assumed that the functions ,6’]() possess equivalent degrees of smoothness and can be

approximated equally well in the same interval. Optimal estimators of the smooth functions are
obtained using the two-step estimator method if the functions possess different degrees of
smoothness, where the degree of smoothness means the changed degree of coefficient function in
the defined domain.
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Assume that ﬂp (u,v,t) is smoother than the other functions. The initial step involves
obtaining an initial estimate of /3, (u,v,t),---, ﬂpfl (u,v,t). In this step the local linear estimation is

used to generate the estimators of ﬂo(u,v,t),---,ﬂp_l(u,v,t), as shown in (13). We set
p-l
=y, =2 B (w.viot,)x, =B, (u,v,t)x, +&,  i=12.n.
Jj=0

In the second step a local least squares regression is fitted again by substituting the initial estimate
in the local least squares problem. In this way a two-step estimator ,5’1, (u,v,t) of ﬂp (u,v,t) is

obtained.
Specifically, we assume that /3, (u,v,t) possesses a bounded second derivative so Taylor

expansion can be used in the neighborhood of (uo,vo,to) as follows:
ﬂp (u’v’t) ~
B, (144,41, )+ﬂ (g, vyt )(u—u0)+ﬂp(v) (uo,vo,to)(v—vo)—i-ﬂp(t) (ugs Vo1 ) (2 1)

The terms ,Bp(“)(uo,vo,to), ,B()(uo,vo, t,) and ,B (uo,vo,to) are partial derivatives of f3, (u,v,t)

about u,v and ¢ at (uo,vo,to) respectively.

This naturally leads to the following weighted least squares problem:

n

Z{ﬁi_[ﬂp(”w"oa )+ﬂ (uoa"oa )( )‘*‘/8 (”o"’o’ )(V‘_Vo)

i=1

2
+ﬂp(t) (anVOato)(ti —1, )} xfp} W, (”mVOato)-
We let
, N (u—uy) X, (v-v) X, (6-1)

G(uo’vobto): x?p x2p (uz_u()) x2p (VZ_VO) x2p (tZ_to) ,

X

xnp xnp (un _uO) xnp (VZ _VO) xnp (ln _tO)
= (1, 0,0, O)T and Y = (Yl, Y, ,Yn )T . Minimising the weighted least squares problem about

B, (u,v,t), we obtain the two-step estimator [?p (u,v,1) of 3, (u,v,1):
—1 A
,B (1> Vo) = 614[GT(u0,v0,t W, (uo,vo,to)G(uo,vo,to)] G" (tys Vs to )W, (U v515) Y, (18)

where W, (uo,vo,to) is the weight matrix with the Gauss kernel function, and 4, is a bandwidth in

the second step.

Choosing Appropriate Bandwidth

In the process of calibrating the GTWR model, the model can be studied using cross-
validation [14, 15]. Suppose the predicted value of y, is denoted as a function of /. It can be
written as j/(l.) (h) in GTWR, so the sum of the squared error can be written as

CV (h,h)= Z[yi 5y (hoh) ] (19)

i=1
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/ 2 n : . .
where /= L and A, =, |— are the space and time bandwidth parameters respectively; #, and &,
A \ u

can be calculated using cross-validation in the two-step estimator.
Then we analyse the rationality of the cross-validation method and note that

E(yi _j}(—[)(hs’ht))2 ZE(Y: _ﬁ/l(—i)(Xi))z
= E(Y -m(X,)+m(X,) =i, (X))

= E(g+m(X,)=m_, (X))
=0 +2E (g, (m(X,) =i, (X)) + E(m(X,) =1, (X,) .

—i st

where _, (h,,h )= _,(X,). Because ¢ and m(X,)—m_, (X,) are conditionally independ-
ent, E(el. (m(Xi)—n%(fi)(Xi)))ZO and we have
N 2 2 A 2
E(y, =Py (h,h)) =0 + E(m(X,) =, (X))
~o’ +E(m(X,)-m(X))) .

Let (X —m_, (X i))z be replaced with its mathematical expectation. Then

1 .

CV (hy,h)~ 0 +=E(m(X,)~m(X,)) .
n

The second term is the average of the mean squared error of each point, so we can use the cross-

validation method.

DATA AND MODELLING

Data and Pre-Analysis

Many factors such as precipitation, sunlight, temperature, atmospheric pressure, wind speed,
relative humidity and pollutant emissions influence air quality. Generally, the AQI will be reduced
with increases in temperature, atmospheric pressure and relative humidity when pollutant emissions
remain constant. We have only considered the relationships among total monthly precipitation,
mean monthly temperature and the mean monthly AQL

To get a uniform distribution in the geographical position, we uniformly chose 67 cities for
study (Table 1) to ensure the data can roundly reflect, if any, the variation of air quality with the
geographical area in China. We collected 12 months (January-December 2013) of relevant data, viz.
average monthly AQI, monthly precipitation, mean monthly temperature, latitude and longitude.
The average monthly AQI data were obtained from the China National Environmental Monitoring
Centre [16], and the monthly precipitation and mean monthly temperature data were obtained from
the China Meteorological Data Sharing Service System [17]. We used Google to find the location of
each city by latitude and longitude.
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Table 1. Cities in China used as study sites

No. Name No. Name No. Name No. Name
1 Xingtai 19 Shijiazhuang 35 Baoding 52 Handan
2 Tangshan 20 Beijing 36 Zhengzhou 53 Shenyang
3 Harbin 21 Changchun 37 Wuhan 54 Chengdu
4 Tianjin 22 Cangzhou 38 Nanjing 55 Changzhou
5 Shaoxing 21 Changsha 39 Taiyuan 56 Yancheng
6 Nantong 23 Huai’an 40 Jinhua 57 Dalian
7 Jinan 24 Lianyungang 41 Hohhot 58 Xuzhou
8 Hangzhou 25 Suzhou 42 Quzhou 59 Guiyang
9 Shanghai 26 Nanning 43 Zhongshan 60 Wenzhou
10 Dongguan 27 Guangzhou 44 Lishui 61 Zhuhai
11 Shenzhen 28 Zhaoqing 45 Huizhou 62 Xiamen
12 Suqian 29 Hengshui 46 Urumgqi 63 Yinchuan
13 Haikou 30 Hefei 47 Ningbo 64 Taizhou
14 Fuzhou 31 Qinhuangdao 48 Taizhou 65 Zhoushan
15 Langfang 32 Nanchang 49 Chengde 66 Lanzhou
16 Xi'an 33 Zhangjiakou 50 Huzhou 67 Kunming
17 Qingdao 34 Xining 51 Lhasa

In January the Chinese cities located on the south-eastern coast and most southern cities had
lower average monthly AQI values, indicating good air quality (Figure 1). The average monthly
AQI values of cities located in east-central and northern China were higher, indicting a poorer air
quality. In January the air quality in Beijing was much worse than during other months (Figure 2).

The total monthly precipitation in most southern Chinese cities was relatively greater than
that in inland cities as shown in Figure 3, where the box in the lower-left corner corresponds to the

range of S, (u,v,t) estimation. If its absolute value is larger, the influence of x, on monthly

precipitation is more important in the 67 cities. The rainfall in Hangzhou city was greatest in June
and August as shown in Figure 4.

Among the 67 Chinese cities studied, the average monthly temperature increased from north
to south and from inland to coastal areas (Figure 5). Figure 6 shows the average monthly
temperature in Lanzhou city.
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Figure 1. Average monthly AQI in 67 cities in January
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Figure 2. Average monthly air quality in Beijing city
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Figure 3. Total monthly precipitation (mm) in 67 cities in February
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Figure 4. Total monthly precipitation (mm) in Hangzhou city
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Figure 5. Average monthly temperature (°C) in 67 cities in February
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Figure 6. Average monthly temperature (°C) in Lanzhou city
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Modelling
Let Y represent the average monthly AQI, X, the sum of monthly precipitation (mm) and

X, the average monthly temperature (°C). We applied the GTWR model to the observational data

of 12 months and 67 cities; the model can be written as
Y, =Ly (u,, vt )+ By (uvint,) Xy + By (v, t) Xy + 6, i=1,2,--67, (20)

where /3, (ui,vi,ti) is the basis of average monthly AQI, ,Bl(ui,vi,ti) represents the average

monthly rate of AQI associated with the sum of monthly precipitation, and £3, (ul.,v. t.) indicates the

127

average monthly rate of AQI associated with the average monthly temperature.

SIMULATION AND ANALYSIS
The First Step

Using the significance test method of Cleveland et al. [18], Mei et al. [19] and Xuan et al.
[20], we constructed the test statistic and obtained the global non-stationary-test p-value and the
significance-test p-value of changes in each coefficient function in (19) through the third moment
¥ approximation. As shown in Table 2, p is the global non-stationary-test p-value of the
regression model, and p,, p, and p, are the significance-test p-values of the regression cofficient
functions S, , B, and p, respectively, which reflects significant changes in the regression

coefficients using the local linear estimation method.

Table 2. Bandwidths and p-values obtained using local linear estimation

h, h, p Do )2 D>

67.73km 0.6801 month 1.31E-307 0.0000958 0.0002781 0.000233

Here, the kernel function is the Gaussian kernel function and all bandwidths are determined
by the cross-validation method described in ‘Choosing Appropriate Bandwidth’ section. In Table 2
the significance test results show that the global non-stationary-test p-values of the regression model
and the significance-test p-values of the regression coefficient functions are very small
(approximately 0). This indicates significant differences in the monthly average AQI, the monthly
precipitation sum and the monthly average temperature in the 67 cities. In other words, the monthly
precipitation sum and monthly average temperature have a significant influence on the monthly
average AQI.

Using the spatio-temporal data set and the results calculated by SAS software, we drew by
means of Surfer (a software made by Golden Software) the S, S, and f, distribution maps of 67

cities in February, which are shown in Figures 7-9 respectively. In Figure 7 the values of S, less

than 6 are mainly from southern locations and south-eastern coastal areas. These cities generally
have sufficient rainfall and higher average temperatures or abundant forest cover. Thus, the
distribution of the benchmark monthly average air index /, is lowest on the southern coast, south-

eastern coast and south-western border, and gradually increases from these areas to northern China.
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Figure 7. The S, distribution of 67 cities in February

Figure 8 shows that the f, values of the 67 cities in February are mostly negative. Only

seven cities (Nanning, Hohhot, Lanzhou, Xining, Lhasa, Kunming and Yinchuan) have positive
values. Either the wind has a greater impact on these cities (such as Lanzhou) or they have
significant forest coverage (such as Nanning). Although we did not consider the impact of factors
such as wind on the AQI, the indices of the seven cities result in positive 5, values. Precipitation

clearly has the largest impact on cities in north-eastern China including Jiangsu and Zhejiang
provinces. It has less impact on the Yangtze River cities and most of the southern cities. This is
mainly because industry is relatively developed and precipitation is relatively low in northern China
and the north-eastern cities. On the whole, cities with adequate monthly rainfall along the Yangtze
River and most of the southern cities have significantly high technological and industrial
development with better and stable air quality, although considerable seasonal variation can
increase the influence of precipitation. Therefore, it has less impact on AQI of the cities along the
Yangtze River cities and most of the southern cities.
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Figure 8. The B, distribution of 67 cities in February
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Figure 9 shows the February distribution of £, in 67 Chinese cities. Cities where the average

monthly temperature has the largest impact on the monthly AQI are in the eastern region, Yangtze
River region, Tibet and Urumgqi regions (temperature changes are more obvious in these cities),
followed by those in the eastern coast and the south-eastern coastal areas. Cities in the southern area
and Sichuan province have less impact on the average monthly air quality, mainly because the area
temperature changes are more moderate. Northern and north-eastern cities are greatly influenced by
rainfall, and the average monthly temperature of these cities has little impact on the average
monthly AQI (greater than -0.079), but the index value remains negative. The £, values for

Lanzhou, Hohhot, Xining and Yinchuan are positive, indicating that in these cities the average
monthly humidity is not the major factor affecting the AQI. We found that the impacts of the total
monthly precipitation and the monthly average temperatures for these four cities are small and these
are not the main factors. Wind as well as other factors might be important, but they are not part of
this study.
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¢
-t = F Y
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-
<0

A 02200009 .0 152484
-0 18484 013783
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Figure 9. The £, distribution of 67 cities in February

The Second Step

The second step of the two-step estimator selects the optimal smooth degree of variable )X,

which is the sum of monthly precipitation, based on the first step, which uses the local linear
estimation. From the two-step estimator, the significance-test p-value of the regression coefficient
function B, is 6.702E-10, as shown in Table 3. Table 3 also states the significance-test p-value of

the regression coefficient function S, based on the first-step estimator to be 0.0002781, which is

greater than the significance-test p-value from the second-step estimation. Thus, the two-step
estimator is a better estimator of the coefficient function /3, .

Table 3. Bandwidths and p-values based on two-step estimator

h, h, p Do )2 D,
The first step  67.73 km  0.6801 month 1.31E-307 0.0000958 0.0002781 0.000233
The second s 16 1111 0.6396 month 0 6.702E-10

step
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Figure 10. The S, distribution of 67 cities in February based on two-step estimator

Figure 10 shows that the February S, values of 67 cities obtained by the two-step estimation

are all negative. Urumgqi has the largest precipitation impact with a 0.1798 rate of change. When the
monthly precipitation increases by one unit, the monthly average AQI decreases by 0.1798, while
the average temperature remains unchanged. The possible reason that Urumgqi has the largest
February precipitation effect among the 67 cities is that it generates significant atmospheric
pollution from coal burning. Inversion weather and the atmospheric stability of Urumgqi in February
are not conducive to the diffusion and dilution of polluted air [21]. However, precipitation has a
large impact on the AQI of north-eastern, northern, eastern and most southern coastal cities,
including Tibet. The rate of change is between -0.01931 and -0.01041. The effect of rainfall on the
AQI of Xi'an, Lanzhou, Nanning and other mid-western and south-western cities is relatively small.
Local factors may affect the AQI. For example, Nanning is greatly influenced by a ridge of high
pressure in February [22]. Lanzhou is influenced by valley terrain conditions; temperature inversion
conditions are stable and deep in February, and the wind has a relatively high impact on the AQI
[23].

CONCLUSIONS

Our analysis has demonstrated that spatio-temporal heterogeneity prevails in real air quality
data, and these data change over both time and space in the study areas. The GTWR approach can
simultaneously deal with both spatial and temporal heteroscedasticity and produces good results in
handling the relationships among precipitation, temperature and air quality. This study shows that
cities in northern China generally have the highest air quality. There are ten cities with the worst air
quality; seven are located in Hebei province. These data are consistent with our simulation results.
The monthly average AQI varies with the mean monthly temperature in each city. When the
monthly precipitation increases by one unit, the northern Chinese cities, eastern coastal cities, north-
eastern cities and Urumqi have maximum rates of change. The simulation results are consistent with
the results found in real life and those from pre-analysis. The GTWR model is useful for simulation
and analysis of the distribution characteristics of the Chinese AQI.
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