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Abstract: The negative binomial-generalised exponential distribution was recently
developed. A multivariate negative binomial-generalised exponential (MNB-GE) distribution
is consequently introduced and applied in a multivariate count data analysis. Some
probabilistic properties of the proposed distribution are studied. A bivariate negative
binomial-generalised exponential distribution is also shown as a special case of the MNB-GE
distribution. Joint probability functions and characteristics of the proposed distributions are
derived. We also consider both dependent and independent bivariate random variables. The
maximum likelihood estimation technique is used to estimate the parameters of the proposed
distributions. Furthermore, the application of accidents data is illustrated for both the
univariate and bivariate versions.

Keywords: bivariate count data, multivariate count data, negative binomial-generalised
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INTRODUCTION

The distribution mixture defines one of the most important ways to obtain new probability
distributions in applied probability and operational research. For a distribution set, a negative
binomial-generalised exponential (NB-GE) distribution has been used to model the number of rare
events that occur at one time and in one area, region, volume or space, and for which the NB-GE
distribution is a mixed negative binomial (NB) distribution. Examples include the number of
automobile liability policies for private cars, the number of telephone calls within a business, and
the number of accidents at an intersection. For the fitting of count data, the NB-GE distribution is an
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alternative to the Poisson distribution, especially when the data present problems of over-dispersion
[1].

Kocherlakota and Kocherlakota [2] presented a bivariate negative binomial distribution
under various forms of ‘chance mechanism’. Kotz et al. [3] reviewed the bivariate negative
multinomial or binomial distribution systematically in connection with historical remarks and
applications. One of the most prominent applications is presented by Lundberg [4].

A new bivariate mixed negative binomial distribution, i.e. a bivariate negative binomial-
generalised exponential distribution, is introduced in this work.

When there are multiple random variables associated with an experiment or process, we

usually denote them as X, X,,...,X,, which is a multivariate (k-variate) distribution. G’omez-

D’eniz et al. [5] proposed a new compound negative binomial distribution by mixing the p negative
binomial parameter with an inverse Gaussian distribution. It provides a tractable model with
attractive properties, which makes it suitable for application not only in the insurance setting, but
also in other fields where overdispersion is observed. A multivariate version of the negative
binomial-inverse Gaussian distribution was also introduced and some examples of application for
both univariate and bivariate cases were given [5]. Liu and Tian [6] proposed a multivariate zero-
inflated Poisson (ZIP) distribution, called Type I multivariate ZIP distribution, to model correlated
multivariate count data with extra zeros. Two real data sets, the defect data of Nortel’s
telecommunications products and the Lacistema aggregatum and Protium guianense data, were used
to illustrate the Type I multivariate ZIP distribution.

In this paper we propose a new multivariate version of the NB-GE distribution. Joint
probability functions and some characteristics of the distribution are presented. The maximum
likelihood estimation (MLE) is used to estimate the parameters of the distribution. Finally, an
application of the univariate and bivariate versions of the NB-GE distribution is illustrated.

METHODS

Basic Results of Univariate Version of NB-GE Distribution

As discussed above, let X be a random variable of the NB-GE distribution, denoted as
X ~NB-GE (r,a, ) , which is a mixture of the NB distribution with parameters » and p=e™ and
a generalised exponential (GE) distribution with positive parameters « and g [7], i.e.

X|A~NB(r,p=e¢*) and 1~GE(a.p). (1)
The probability mass function (pmf) of X is given by
(e +1)r(1 +r”j
r+x—-1\&(x A
f(x) =[ jZ( .j(—l)’ : , x=0,12,..., )
e F(a+r+]+1]
p

where r,a, >0 and I'(-) is a gamma function denoted as I'(¢) = f x'edx, fort > 0.
0
The factorial moment of order £ is given by
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The mean and variance are
E(X) = (8, —1) and Var(X) = o}, =7 (r +1)8,, =r(rd,, +1)8,,., (4)
where

:F(a+l)F(1—u/ﬂ) 5)

@ T(a-ulB+1)

Theorem 1. Let X ~NB-GE(r,a, ), A~GE(a, ) and X ~NB (r, p= [E(el)]‘1 ) . Then
(a) E(X)=E(X) andVar(.X)> Var(X),
(b) Var(X)>E(X).
Proof. Explicitly, E(¢*)>1; then p= [E(eﬂ )]_l =1/E(e"). Now, the same mean of X and X is
BE(X)=E[E(X |4)]=E(X)= r[E(e’l) - 1] and the variance of X and X are, respectively,
Var(X) =E[Var(X | 1)]+ Var[E(X | )]
=r[ E(e)—E(e’) |+’ Var(e?),
Var(X) = [ E(e*)~1]E(e").
We then obtain that Var (X') > E(X) and consequently,
Var(X) - Var(X) = [ E(e*") - E(e") |+ r*Var (e’ —r[E(eﬂ ) —1}15(&)
= r[E(e“) — (E(e’l))2 } + erar(e’l )
= (r2 + r)Var(e’l) > 0.

Bivariate Negative Binomial-Generalised Exponential (BNB-GE) Distribution

In this section we present the joint and conditional probability mass functions of dependent
and independent BNB-GE distribution. The joint pmf can be used to infer the conditional pmf, so
consequently we can use the conditional pmf to find the joint probabilities of events that both occur.
Moreover, in probability theory a conditional probability measures an event’s probability given that
another event has occurred. Therefore, the conditional probability mass functions are useful for
updating information of the event based upon the knowledge of other related events.

Let X, and X, be discrete random variables defined in the same probability space
(Q , 7 P), consisting of a sample space Q, a o -field 7 of subsets of 2, and a probability measure
on 7 If we have X,,X, € Q, then we will collect data for the random variables X, and X,. We

wish to analyse the dependencies between these random variables, where X; and X, are independ-
ent if and only if

f(x.x)=f(x) f(x); Vx €Q, . Vx,eQ, .
If X, and X, are independent random variables, then the covariance of the two variables is
oy .y, = Cov(X,,X,)=0 or E(X,X,)=E(X,)E(X,).
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Dependent BNB-GE distribution

Let X, and X, be dependent NB-GE random variables. The joint probability function of the

dependent BNB-GE random variables is defined in Definition 1, and some graphs of the joint pmf
of the dependent BNB-GE are shown in Figure 1.
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Figure 1. The pmf of dependent BNB-GE random variables X, and X, with specified parameters

Definition 1. Let X, and X, be dependent random variables. A bivariate negative binomial-
distribution (X X 2) is defined by the stochastic representation:

X,|A~NB(r,e”), i=12 and A~GE (. ).

[

Using this definition and arguments similar to those used in the basic results of the
univariate version of NB-GE distribution, we obtain the joint pmf of X, and X, given by
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where x, =0,1,..., i=1,2, X=x,+x,, 7 =r+r, and 7,n,a,>0.

Theorem 2. Let X, and X, be dependent random variables for the joint pmf as in (6). Then the

r(a+1)r(1—2k_j]

T )
F(a— _‘]+1J

B

factorial moment of order k is

H(X,X,)= F(r';k)r(rz +4) i(%kj(—l)f

where k£ =1,2,... and 7,7,,a, 5 >0.

Proof. If X,~NB(r,p=¢"), i=1,2 and A~GE(a, ), then the factorial moment of order k of
X can be obtained by

ﬂ/L(X1X2):E,1 [/‘1; (Xi | /1)]
F(rl +k)(1—e’ﬂ“)k XF(r2 +k)(1—e”1)
F(rl)e_M F(rz)e_j“k

k

SR

 T()T(n)
F(l’1+k)l—‘(r2+k) B 2%k
e e

Using a binomial expansion (e;“ —I)M, 4, (X,X,) can be written as
, C(r+k)C(r+k)& (ij . Ak-i)
4 (X, X,)= =1V E, (23
)= & SR
2k 2 )
_ 1"(r1 +k)1"(r2 +k) ( .kj(—l)]Mi (Zk—j)
C(n)C(rn) =\ :

C(a+1)T(1-2/p)

C(a—t/p+1)
where 7 is replaced with 2k — j . Then we obtain g, (X, X, ), which can be written as shown in (7).

From the moment generating function of GE distribution, M, (¢) =

From the factorial moment in (7), we also obtain the mean and covariance of X, and X,
respectively as:

E(X,X,)=nn, [5

(2 =29 +1] and o, =1, (5(2> _5(2”)’ ®

where &, is defined in (5). Note that &, - &;

o = Var (e’l) and the correlation coefficient of X, and

o
. XX . . .
X, is py y, =—30< py , <1, where oy = Var(Xi), i=1,2, which is the same as the
x9x,
expression in (4). The covariance and correlation matrices of X, and X, are equal to
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¥ — X, Xlz,xz and p= X1, 4, '
GXI,XZ O-XZ pXqu 1
Next, we analyse the situation where a related event occurs and consider the situation where
X, is used to explain X,, which is called the condition distribution of X, given by X, =x,. The

conditional pmf of the dependent BNB-GE distribution is

P(X:|X1=x1j=%=f(xl)}ﬂ_ (9)
1

Independent BNB-GE distribution

Let X, and X, be independent random variables. With the stochastic representation of
X, |A~NB(r,,e™), i=12; A,~GE(e;, ) and arguments similar to those used in the basic
results of the univariate version of NB-GE distribution , we obtain the joint pmf of X, and X, as

given by Definition 2. Moreover, some graphs of the joint pmf of independent X, and X, are shown
in Figure 2.

Definition 2. Let.X, and X, be independent random variables. Assuming that X,~NB-GE (r,e "),
i=1,2;4~GE (e, S,), then the joint pmf of X; and X, is given by

f(xl,xz):(”l +x, —lj[rz X, _ljlj[ i(xf}(—l)f I'(a, +1)r[1+':-+1j

i
X, X, =0

F(aﬁwﬂj
b,

When X, and X, are independent, we have the mean and variance of X, as defined in (4),

(10)

where x, =0,1,...,i=1,2, and r,a, B >0.

and o, , =0.The covariance and correlation matrices of X, and X, are thus equal to

E"f o :_: [:l H‘| E.-" 1 I:]"'\.I.

and the conditional pmf of the dependent BNB-GE distribution is given by P(X | X, = xl) = f(x,).

Multivariate Negative Binomial-Generalised Exponential (MNB-GE) Distribution

We propose an MNB-GE distribution, which is a natural extension of the BNB-GE
distribution. The MNB-GE distribution can be considered as a mixture of independent random

variables X,~NB-GE(r,e*), i=1,2,...,m combined with A~GE(a,B). This proposed
distribution is obtained by using a method in accordance with G omez-D eniz et al. [5].
Definition 3. LetX,~NB-GE(7,a,f), i=1,2,...,m be independent and identically distributed
random variables. A multivariate negative binomial-distribution (X . CY. ¢ m) is defined by the
stochastic representation

X, |/1~NB(7;,e_l), i=12,...m,

A~GE(a, ).
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Figure 2.
parameters

The pmf of independent BNB-GE random variables X, and X, with specified

Using this definition and arguments similar to those used in the basic results of the
univariate version of NB-GE distribution, we obtain the joint pmf of the MNB-GE distribution
defined by:

f(xl,xz,...,xm):ﬁ(ri +;i_1j _SC (j,j(—l)j (11)

1
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where x, =0,1,...,i=1,2,...,m, X=x,+x,+---+x,, F=r,+1,+---+r,, and 1,,a, > 0.

A simpler expression of the joint pmf of the MNB-GE distribution in (11) can be written as

Next, some characteristics of the MNB-GE distribution, such as the mean vector, covariance
matrix and correlation coefficient matrix, are proposed respectively as follows:

E(Xl) UX[ O-XI’XZ o O-Xl’Xm 1 pXI’XZ o pX[aXm
2
E(X o ol - o P 1 e p
2 X, X X X,.X,, X, X X, X,
pe| B p | T O G g | P e
2
E(Xm) UXI’XM UXZ’Xm o UXm leaXm pXZaXm o 1

where
E(X,)) = r(Sy—1), i=1,2,...,m,
oy, = n(n+1)é,, _ri(’”i5<1> +1)5(1>’
Oy x, =;;.if/(5(2)—5(21)) >0for i+ J,

Oy, .x,

Px x, = for 0<py <.

J
Oy Oy,
Parameter Estimation

In this section the method of parameter estimation is discussed based on the MLE technique.
There are procedures for three different cases of the NB-GE distribution, viz. univariate case,
dependent bivariate case and independent bivariate case.

Univariate case

The likelihood function for a random sample of size » from univariate NB-GE distribution
with the pmf in (2) is provided as

|rf 'H'I
) L., T+br i+t
P ir+x-1VE [ x) ; | )
=11 2 Y S (12)
feml I\.‘_ x _,-'v:'-:lln._\_._;_,-' I'I a+r+.} +1 1
| 1
~ )

Thus, by taking the logarithm of (12), the log-likelihood function is given by

l, =Zn:[logf(r+xi)—logl“(r)—logl“(xi +1)+10gF(a+1)+10g§(r+j,a,,8):|,

i=1
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% [ x ;
where £(r+ 7.0, 8)=2 | (- ————F 4.
o\ ra+? 77 1]
\ J
ov o o0\
In order to obtain the unit score vector U, = (a—”, p . af;‘) , we take the derivative of the
r oa

log-likelihood ¢, with respect to 7, & and £. Then equating the unit score vector to zero results in

a non-linear equation that can be solved numerically through many well-known statistical softwares.
Therefore, the non-linear model function in the R language [8] is employed to find the estimates of

T
(r, a, 1)".
Bivariate cases

Next, two kinds of bivariate case are considered. Suppose X, and X, are distributed as the

BNB-GE distribution. The likelihood functions can be computed from the joint pmf in (6) and (10).
Consequently, the log-likelihood functions can be written as follows.

For the dependent bivariate case, we obtain from the pmf of the dependent BNB-GE in (6)
that the log-likelihood function is

l, :Zn:[logf(lfl +x,,)—logI'(r,)—logI"(x,, +1)+1logT' (7 +x,)—logT'(r,)
i=1
—logT(x,, +1)+logF(a+1)+log§(}7+j,a,ﬂ):|,
F(a+l)1“(l+’:+‘]}
B

F(oﬁﬂjﬂj
B

For the independent bivariate case, the log-likelihood function of the independent BNB-GE
in (10) is given by

(13)

, F=r+r,and X=Xx, +x,.

where &(7+ j,a, )= 3 (?j(—l)j

J=0

0 =Z:[logl“(r1 +xll.)—logl“(r1)—logl“(xh.+1) Jrlogl“(oz1 +1)+10gf§(l’i +j,a1,,b’1):|

i=1
+Zn:[log1"(r2 +x,,)—logI'(r,)—logI(x,, +1) +logT' (e, +1)+log&(r, +j,a2,ﬂ2):|.
= (14)

In the same manner as mentioned above, the unit score vector associated with the log-
likelihood functions in (13) and (14) are equated to zero and solved numerically to obtain the
estimates of parameters.

RESULTS AND DISCUSSION

For the application of this study, one example of dataset is used to fit count data to the
proposed distribution based on a bivariate case. The number of accident proneness of 122

experienced railroad hunters is used, as appearing in Dunn [9]. Let X, refer to the number of
accidents suffered by an individual in the 6-year period between 1937-1942 and X, refer to the
number of accidents suffered by the individual in the following 5 years from 1943 to 1947.
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Table 1 shows the observed and expected values of the accidents and provides the estimates
for parameters in (6) for this data set, where 7=13.1444, 7,=20.1991, ¢ =3.3105 and $=29.9360.

The estimated parameters were obtained using the MLE procedure, along with the non-linear model
function in R language [8]. We found that the BNB-GE distribution appropriately fits the
dependent bivariate count data. In addition, plots of observed and expected frequencies of accident
among 122 experienced railroad hunters by fitting the data with the dependent BNB-GE distribution
as shown in Figure 3.

Table 1. Observed and expected (in brackets) values of accidents among 122 experienced railroad
hunters

In years 1943-47 In years 1937-42 (X)) Total of X,
(X3) 0 1 2 3-7
0 21 (25.6) 18 (18.2) 8 (9.0) 3(6.4) 50 (59.2)
1 13 (11.8) 14 (11.2) 10 (6.9) 6(6.4) 43 (36.3)
2 4 (3.9) 5(4.6) 4(3.4) 4(4.1) 17 (16.0)
3-7 - 4 (4.0) 4(2.2) 4 (4.3) 12 (10.5)
Total of X, 38 (41.3) 41 (38.0) 26 (21.5) 17 (21.2)
Parameter estimates 7#=13.1444, 7,=20.1991, & =3.3105 and £ =29.9360
Chi-squared test x* = 6.6252, degree of freedom = 10, p-value = 0.7603
Observed Frequency Expected Frequency

20

10

1
le
| o
IR,
—
x2
Number of accidents
1
e
e
x2

Number of accidents

Figure 3. Plots of observed and expected frequencies of accidents among 122 experienced railroad
hunters by fitting the data with dependent BNB-GE distribution

Table 2 shows the expected values of the number of accidents suffered by an individual in
the 5-year period (1943-47) (X,) when using the marginal probability function in (2) and the
conditional probability function in (9). Based upon the Chi-squared statistic value, the results show
that the distribution of X, with the conditional probability is better fitted than using the marginal
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probability. Figure 4 illustrates a bar chart of frequency of accidents suffered by an individual in
the 5-year period, from 1943 to 1947 (X,).

Table 2. Observed and expected values of accidents suffered by an individual in 5 years, from
1943 to 1947 (X,)

Expected value by fitting distribution

In years 1943-47 (X,) Observed value

Marginal Conditional
0 50 393 59.2
1 43 39.9 36.3
2 17 24.0 16.0
3-7 12 18.8 10.5
Parameter estimates 7, =11.1158, 7,=13.1444
a =23.5887 7,=20.1991
B=34.7328 4=3.3105
5=29.9360
a 7.5784 2.9432
S
7 O conditional |
i} 1 i ar

X2

Figure 4. Frequency of accidents suffered by an individual in 5 years, from 1943 to 1947 ( X,).
Expected values are obtained by fitting data with marginal and conditional NB-GE distributions.

CONCLUSIONS

This work proposes a new multivariate mixed negative binomial distribution which is called
a multivariate negative binomial-generalised exponential distribution including the closed form.
Some characteristics of the proposed distribution have been introduced. A bivariate version of the
NB-GE distribution has been shown as a special case of the MNB-GE distribution, where the
dependent and independent random variables are included. Parameters of the distribution are
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estimated by using the maximum likelihood estimation technique, and are computed using
numerical optimisation under the non-linear model function in R language. In addition, the expected
frequencies show a satisfactory goodness of fit; thus, the new distribution may be used to model the
count data. Finally, the application of the univariate and bivariate random variables is illustrated.
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