

การคัดแยกแบคทีเรียที่เรียนคืนจากน้ำ คิน และอาหารที่มีกรรมวิธีการใช้เกลือที่ความเข้มข้นสูงเป็นองค์ประกอบในการบวนการผลิตจากแหล่งต่าง ๆ โดยใช้อาหารสำหรับการคัดแยกแบคทีเรียที่เรียนคืน (Halophilic agar) ในการคัดแยกขึ้นด้วยสามารถคัดแยกแบคทีเรียที่เรียนคืนได้ทั้งหมด 34 ไอโซเลท และนำเข้าแบคทีเรียที่เรียนคืนดังกล่าวไปเลี้ยงในอาหารเหลว (Halophilic broth) ที่ประกอบด้วยเกลือความเข้มข้น 0, 5, 10, 15, 20 และ 25 เปอร์เซ็นต์ (w/v) เป็นเวลา 7 วัน แล้วตรวจวัดความหนาแน่นของเซลล์ของแบคทีเรียที่เรียนคืนแต่ละชนิดเพื่อหาแบคทีเรียที่เรียนคืนที่สามารถเจริญได้ดีที่สุดและทนทานต่อความเค็มที่สามารถเจริญได้ดีในช่วงความเข้มข้นเกลือสูง ได้จำนวน 8 ไอโซเลทและทำการทดสอบคุณสมบัติการย้อมสีโดยสังเกตการเกิดวงไฟบวมเมื่อย้อมแบคทีเรียที่เรียนคืน 3 ไอโซเลท จากทั้งหมด 34 ไอโซเลท ที่ให้คุณสมบัตินี้ ในการทดสอบในครั้งนี้จะทำการทดสอบประสิทธิภาพการนำบัคน้ำเสียโรงงานย้อมผ้า จ.ลำพูน โดยอาศัยแบคทีเรียที่มีลักษณะทนเค็ม เนื่องด้วยน้ำเสียจากโรงงานย้อมผ้ามีลักษณะเป็นน้ำเสียรวมกัน เป็นน้ำเสียจากการใช้สีย้อมหลายชนิด และมีการทิ้งน้ำเสียรวมกันและในขั้นตอนการย้อมสีนั้น จะต้องมีการเติมเกลือเป็นสารช่วยย้อมลงไปในน้ำสีเพื่อวัดคุณภาพสีให้สีย้อมมีการติดทนทานดังนั้นน้ำเสียรวมจะมีปริมาณความเข้มข้นเกลือสูงทำให้ยากต่อการจัดการ โดยระบบนำบัคน้ำเสียทางชีวภาพแบบใช้แบคทีเรียทั่วไป ดังนั้นจึงควรใช้แบคทีเรียที่มีลักษณะทนเค็มมาใช้ในการทดสอบประสิทธิภาพในการนำบัค จากการตรวจเมื่องดันของน้ำเสียโรงงานย้อมผ้ามาติก จ.ลำพูน มีคุณสมบัติ ดังนี้ มีปริมาณค่า FCOD = 1,807 มิลลิกรัมต่อลิตร , pH = 7.4 - 7.9 และปริมาณความเข้มข้นของเกลือ = 1.2 เปอร์เซ็นต์ (w/v) ในการทดสอบประสิทธิภาพนี้ได้ทำการคัดเลือกแบคทีเรียที่เรียนคืนที่คัดแยกได้ออกเป็น 2 กลุ่ม โดยแต่ละกลุ่มนี้มีคุณลักษณะดังนี้ คือ กลุ่มที่ 1 แบคทีเรียที่เรียนคืนที่เกิดลักษณะวงในบนอาหาร Halophilic agar ที่มีการเติมสี Basic dye (แบคทีเรียที่เรียนคืนรหัส F₁P₁, S₁P₁ และ W₃P₂) และกลุ่มที่ 2 แบคทีเรียที่เรียนคืนที่เจริญได้ดี ในช่วงของความเข้มข้นเกลือสูง (แบคทีเรียที่เรียนคืนรหัส S₈P₃, W₂P₂ และ W₃P₇) ผลการนำแบคทีเรียที่เรียนคืนทั้งสองกลุ่มมาทดสอบในน้ำเสียโรงงานย้อมผ้าที่มีการทำ Pre - treatment จะมีค่า FCOD = 880 มิลลิกรัมต่อลิตร, pH 7.0, ปริมาณความเข้มข้นของเกลือ 1.2 เปอร์เซ็นต์ (w/v) ปริมาตร 500 มิลลิลิตร ในสภาพเติมอากาศ โดยการเขย่าความเร็วรอบ 155 rpm เป็นเวลา 21 วัน พบว่า มีแบคทีเรียที่เรียนคืน ไอโซเลทที่สามารถให้ประสิทธิภาพการนำบัคดีที่สุด คือ แบคทีเรียที่เรียนคืน ไอโซเลท S₁P₁ สามารถกำจัดสารอินทรีย์ได้เท่ากัน 83 เปอร์เซ็นต์และสามารถลดปริมาณสีย้อมในน้ำเสียได้เท่ากัน 89 เปอร์เซ็นต์ และเมื่อนำมาทดลองการทดสอบประสิทธิภาพของแบคทีเรีย - ทนเค็มทั้ง 2 กลุ่ม (6 ไอโซเลท) น้ำวิเคราะห์หาความแตกต่างทางสถิติ ที่ระดับความเชื่อมั่น 95 เปอร์เซ็นต์โดยวิธีการ CRD พบว่าแบคทีเรียที่เรียนคืนทั้ง 6 ไอโซเลท ให้ผลประสิทธิภาพการนำบัคดีความแตกต่างกันทางสถิติ และการศึกษาสัมฐานวิทยาของแบคทีเรียที่เรียนคืน (S₁P₁) นำมาทำการศึกษาทางด้านสัมฐานวิทยาระบุว่าเป็นแบคทีเรีย แกรนูล รูปร่างท่อน ทดสอบทางด้านชีวเคมี พบว่าแบคทีเรีย (S₁P₁) จัดอยู่ในสاضพันธุ์

ABSTRACT

TE 152599

In this study, halotolerant bacteria were screened from water, soil, and food using strong saline solution in production process by halophilic agar. From the screening step, 34 bacterial isolates were produced and then cultured in halophilic broth that contained 0, 5, 10, 15, 20 and 25% salt (w/v) for a 7-day period. Afterwards, cell density of each type of halotolerant bacteria was measured and a total of 8 bacterial isolates were identified as having the best growth rates and resistance to a strong saline solution. When later tested in their ability to disintegrate color based on the clear zone they produced, 3 bacterial isolates were identified from an initial number of 34 bacterial isolates. In this particular experiment which was conducted in Lamphun province, the efficiency of the bacterial isolates to treat wastewater from textile finishing industry, was tested. The wastewater from textile finishing industry contained a collection of wastewater from various types of color dyes and from other sources. During the dyeing process, alkaline substance was added to the solution to make the it more permanent. The overall wastewater thus contained a high volume of saline making it difficult to undergo biological treatment with ordinary bacterial isolates. In the analysis of the wastewater management from a finishing batik textile industry in Lamphun province, the results showed that it contained 1,807 mg/l FCOD with pH of 7.4-7.9 and concentration volume of saline at 1.2% (w/v). In the efficiency test, the screening produced 2 groups of halotolerant bacterial isolates, which later showed specific properties. Group 1 consisted of halotolerant bacterial isolates that showed clear zone on the halophilic agar containing basic dye (halotolerant bacteria with codes F₁P₁, S₁P₁ and W₃P₂). Group 2, meanwhile, had halotolerant bacterial isolates that grew well in a strong saline solution (halotolerant bacteria with codes S₈P₃, W₂P₂ and W₃P₇). When the two groups of bacterial isolates were used to treat wastewater from textile finishing industry that was pre-treated already (containing 880 mg/l FCOD, pH of 7.0, alkaline concentration of 1.2% (w/v) with a volume of 500 ml in a normal atmosphere through centrifugal speed of 155 rpm for 21 days), results showed that S₁P₁ bacterial isolate was the most efficient. It was also able to treat organic materials (83%) and reduce the amount of dyes in wastewater (89%). When the efficiency results of the two groups (6 isolates) were analyzed using CRD ($P < .05$), it was found that the treatment efficiency of 6 bacterial isolates were significantly different. Morphological study of S₁P₁ bacterial isolate later showed that it was Gram negative and had a rod shape. Further biochemical tests showed that this bacterial isolate was a strain of *Chryseomonas luteola*.