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Abstract

Cardiac auscultation is a method for a doctor to listen to heart sounds, using a stethoscope, for examining the condition
of  the  heart.  Automatic  cardiac  auscultation  with  machine  learning  is  a  promising  technique  to  classify  heart  conditions
without need of doctors or expertise. In this paper, we develop a classification model based on support vector machine (SVM)
and particle swarm optimization (PSO) for an automatic cardiac auscultation system. The model consists of two parts: heart
sound signal processing part and a proposed PSO for weighted SVM (WSVM) classifier part. In this method, the PSO takes
into account the degree of importance for each feature extracted from wavelet packet (WP) decomposition. Then, by using
principle component analysis (PCA), the features can be selected. The PSO technique is used to assign diverse weights to
different features for the WSVM classifier. Experimental results show that both continuous and binary PSO-WSVM models
achieve better classification accuracy on the heart sound samples, by reducing system false negatives (FNs), compared to
traditional SVM and genetic algorithm (GA) based SVM.
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1. Introduction

In  recent  years,  surveys  have  shown  an  increasing
trend for cardiovascular disease, which is the leading cause of
death for people around the world (Lloyd et al., 2007; Sekar
et al., 2011). However, the percentage of death caused by
heart disease can be reduced, if we can detect the condition
and properly treat the patients in an early state before the
disease becomes fatal (World Health Organization [WHO],
2008).  The  mechanical  operation  of  the  heart  and  cardio-
vascular system, including pathology and physiology infor-
mation, can be analyzed from the heart sound itself using the

auscultation technique. By using this technique, we can effi-
ciently detect cardiac disorder with low cost. Unfortunately,
traditional heart auscultation required experienced physicians
and dependent on their ear sensitivity. Also, the availability
of such an expert is limited, especially in local clinics in sub-
urban areas (Clark, 2012).

Nowadays, artificial intelligence research in the bio-
medical  field  has  become  increasingly  popular  due  to  its
capabilities  in  dealing  with  real  world  medical  problems.
Yuenyong  (2009)  had  proposed  automatic  heart  sound
analysis using pattern recognition neural network (NN). In his
work, electrocardiography (ECG) signal is used as a reference
signal for segmentation of heart sounds. However, it is diffi-
cult to identify and segment some of abnormal heard sounds,
where the signals become severely corrupted. To avoid seg-
mentation of the heart sound, Yuenyong (2011) presented a
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framework for automatic heart sound analysis based on auto-
correlation of envelope signal to find length of cardiac cycle.
He used multi-layer feedforward NN with back propagation
(FFBP) to classify abnormal heart sounds from normal one.
Phatiwuttipat (2011) extended the work by introduction of
support vector machine (SVM) and replacing NN for cardiac
auscultation classification. It was concluded that SVM with
radial basis function (RBF) had better performance in term
of  accuracy  and  computational  time  than  FFBF  used  in
Yuenyong (2011).

By substitution of NN with SVM (Phatiwuttipat, 2011),
each heart sound feature is treated as equal quality, as seen
by the SVM classification. However, some of the heart sound
features create more impact than others, which relate to the
performance of the classifier. In this paper, we developed a
weighted SVM classification system for heart auscultation
using optimization techniques to achieve an optimum set of
weighted features. Then, the weighted features will be used
for training the SVM classifier, in which a higher accuracy
can  be  obtained.  The  aim  of  the  proposed  method  is  to
reduced time and difficulty for patients in rural areas where
no major hospital is easily accessible.

This  paper  is  organized  as  follows.  In  Section  II,
overview  of  methodology  and  the  proposed  method  are
presented.  The  experimental  results,  obtained  with  actual
heart sound signals and discussion are given in Section III.
Finally, conclusion and future work are drawn in Section IV.

2. Materials and Methods

Auscultation  consists  of  two  parts:  heart  sound
acquisition and heart sound analysis. In heart sound acquisi-
tion, a stethoscope is placed on the appropriate location on a
patient’s chest. The right amount of force is carefully applied
to  capture  the  heart  sound.  The  second  part,  heart  sound
analysis, is used to identify whether the acquired heart sound
is a healthy or diseased heart condition. Healthy adult heart
sounds consist of mainly two events: the first heart sound
(S1) and the second heart sound (S2), which are referred to
as fundamental heart sound (FHS). The interval between
the beginning of S1 and the beginning of the next  S1 is a
complete cardiac cycle of a single heartbeat, where systole is
the interval between the ends of S1 and the commencement
of the same cycles S2, and diastole is the interval between
the ends of S2 and the commencement of the next cycles S1
(Yuenyong, 2011). However, in an abnormal heart, the cardiac
cycle will present extra components that are not in the FHS.
Those extra components can be classified into two types:
extra  heart  sounds  and  murmur  sounds.  The  second  type,
murmur  heart  sound,  occurs  when  turbulent  blood  flows
through a blocked (stenosis) valve, or backward through a
leaking (regurgitation) valve. Those murmur events distort
the FHS waveform, where the sounds can be heard in both
systole and diastole. As a result, the FHS cannot be precisely
determined. Overall block diagram of the proposed system
is  shown  in  Figure  1,  which  consists  of  data  collection,

preprocessing, feature extraction, feature selection, classifi-
cation, and weighting factor optimization.

2.1 Data collection and preprocessing

The  input  heart  sound  consists  of  digitized  heart
sound, acquired from Texas heart institute (Robert & Wilson,
2006). Heart sounds are labeled according to their conditions:
normal heart or abnormal heart. In the preprocessing phase,
the period of each heart cycle will be equalized and resampled
at  a  rate  of  4  kHz.  Noise  cancellation  is  performed  using
5-level discrete wavelet transform (DWT) via soft threshold
with  Daubechies-6  wavelet  family  as  suggested  by  (Phati-
wuttipat, 2011). Finally, each heart sound x is normalized to
have zero mean and unity variance using Equation (1):

 
ˆ

x-
 x






where x̂  is the final preprocessed heart sound signal.

2.2 Feature extraction

In this work, we adapt feature extraction based on the
wavelet packet (WP) technique since heart sounds are non-
stationary signals, which are not well suited for a traditional
Fourier based technique. The WP-based technique can retain
most  of  the  time-frequency  information  in  the  signal  for
multi-resolution decomposition, It yield superior performance
at  characterizing  local  time  and  a  segregated  piecewise

Figure 1.  Overall block diagram of the proposed system.
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frequency  representation  for  each  decomposition  level,
to improve frequency resolution, the higher-order Daubechies
family wavelet is applied to extract features from the heart
sound signal. In Figure 2, WP decomposition is shown such
that the results of high pass g[n] and low pass h[n] filter with
a factor 2 decimation are achieved for signal approximation
and detail coefficients.

A non-normalized Shannon’s entropy criterion is used
to evaluate each sub-band energy after WP decomposition
as follows:

       log    E t x t x t    (2)

where ˆ( )x t  is the preprocessed heart sound signal and E(t) is
the Shannon’s entropy representation. Noise and disturbance
are attenuated by the logarithmic term while allowing greater
entropy  weight  for  the  signal  intensity.  We  select  6-level
decomposition on Daubechies-3 mother wavelet function to
use with the heart sound signal as verified in Brechet (2007).
Energy retention (99%) is selected to obtain the best-basis
feature of 96% of compression rate, approaching hierarchi-
cally  on  the  decomposition  indices.  Total  feature  outputs
from the 2-channel filter banks can be found as in Equation
(3):

1

2 ,  6
n

i

i

k n


  (3)

where k is the total feature output after WP decomposition.
As a result, 126 final output features are acquired from the
piecewise components on the time-frequency plane.

2.3 Feature selection

In this work, we use the linear transformation method,
principle component analysis (PCA), to eliminate insignifi-
cant feature sets. By using an orthogonal transformation to
convert  a  set  of  possibly  correlated  features  into  a  set  of
values of linearly uncorrelated features, only highly relevant

features are selected and thus, the dimension feature space
is reduced, to be put into the classification. To describe the
PCA feature selection method, we define the training set  such
that  the  magnitude  of  their  eigenvalues  are  arranged  in
descending order from top to bottom as follows:

  
1

1

1

k T
i i

i

Z a a a a
k 

  

 (4)

where k is the number of feature vectors, ai  are the raw feature
vectors, and a  is the mean vector. The following equation is
used to select relevant features:

A QB (5)
where  A  and  B  are  matrices  whose  columns  are  feature
vectors and Q is a matrix whose rows are eigenvectors of the
covariance matrix of the training set Z. We select features form
the matrix Q that make up 90% of the sum of all eigenvalues.
After  performing  PCA  feature  selection,  12  features  are
obtained from the original 126 heart sound feature sets.

2.4 Support vector machine

Let us consider a supervised support vector machine

(SVM) classifier with a training dataset  
1

, 
N

ii i
x y


, where x

is the input sample and    1, 1  y    is the label of classes.
An SVM classifier is constructed by using an optimal hyper-
plane with far enough distance to isolate two classes of the
training dataset. This hyperplane is defined as 0w x b   ,
where x is a testing data point on the hyperplane, w deter-
mines the orientation of the hyperplane, and b is the bias
value with respect to the origin. A margin is used to form the
decision surface and is represented by the distance d between

two supporting hyperplanes as 2d w . The larger the margin
d, the better the classifier can separate the dataset. To find the
optimum hyperplane, we must minimized 2w  with the con-
straint   1,  1, 2, , 

i i
y w x b i n     . Thus, the optimization

problem for finding the optimum hyperplane is given by

minimize
w   21

2
w

subject to   1,  1, 2, ,     
i i

y w x b i n     (6)

Furthermore, for a practical classification problem,
the data sample may not always be linearly separable. The
positive slack variable i

  is introduced for a nonlinear deci-
sion surface by substitution into the optimization problem.
This  allows  an  error  term  in  the  SVM  classifier  as  a  soft-
margin classification. The new optimization problem is shown
as in Equation (7):

minimize
w

  2

1

1
 
2

N

i
i

w C 


 

Figure 2.  Wavelet packet decomposition structure.
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subject to     1 , 
i i i

y w x b     (7)

  1, 2, ,i n 

0
i
 

where C is a non-negative cost parameter which controls the
tradeoff between maximizing margin and minimizing error.
Finally, the classification decision function becomes:

   
1

sing ,
N

i i i j
i

f x L y K x x b


 
 
 
 
 (8)

where 
i

L  are Lagrange multipliers, and    ,
i j

x x x . For
a nonlinear classifier, a kernel function  x  is used to map
the nonlinear data into a higher dimensional space. In this
work, we select the RBF kernel function for the SVM classifier
as  suggested  by  Phatiwuttipat  (2011).  The  RBF  kernel  is

calculated by using    2, exp
i j i j

K x x x x    where

1 2
, , ,  

T

i i i id
x x x x    and 

1 2
, , ,

T

j j j jd
x x x x  

   are

two sample data sets and 0   is the width of the Gaussian.

2.5 Weighted support vector machine

In traditional SVM (Phatiwuttipat, 2011), each feature
of a sample data set is assumed to have equal contribution to
the classification results. However, the quality of features may
have a different impact on the performance of a learning algo-
rithm. Thus, if we assign a different weight for each feature,
the  performance  of  a  learning  algorithm  can  be  improved.

Given the training dataset  
1

, 
N

i i i
x y


 and weighted vector

d R , defined as 
1

1
d

i
i




  for 0
i

  , the optimization

problem can be modified as follows:

minimize
w   21

 
2

w

subject to     1,  1, 2, ,  
i i

y w diag x b i n      (9)

where   diag  is a diagonal matrix with diagonal entries .
A new optimization problem can be formulated by substitut-
ing Equation (9) into Equation (7) as:

minimize
w   

2

1

1
2

N

i
i

w C 


 

subject to     1
i i i

y w diag x b      (10)
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Similar to traditional SVM, the final classification decision
function becomes:

   '

1

sing ,
N

i i i j
i

f x L y K x x b


 
 
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 
 (11)

where the weighted RBF kernel is

   2'

1
, exp

d

i j k ik jk
k

K x x x x 
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  
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2.6 Particle swarm optimization

Particle  swarm  optimization  (PSO)  is  a  stochastic
optimization  and  one  of  the  evolutionary  computational
techniques proposed by Kennedy and Eberhart (Kennedy &
Eberhart, 1995, 2001). Inspired by the social behavior of fish
schooling and bird flocking, PSO is a population-based search
method, similar to other evolutionary computation algorithms
such as genetic algorithms (GA) (Whitley, 1994) that exploit
sharing social information. The main idea of the PSO can be
viewed as follows; during solution searching process in the
d-dimension space, each individual or candidate solution,
called a particle, will adjust its velocity and position based
on its previous experience and also those of the other com-
panion particles in the population, called a swarm. Thus, each
particle of a given population can benefit from the previous
experiences of all other individuals in the same swarm.

Consider a swarm of size S, each particle Pi, where
i = 1,2,…,S  in  the  swarm  is  characterized  by  its  current
position     d

i
p t R  at iteration T. This is a candidate solu-

tion  of  the  optimization  problem,  its  velocity      d
i

v t R ,
and the best position from its past trajectories     d

bi
p t R .

Define     d
g

p t R  as  the  best  global  position  from  all
trajectories visited by the particles in the swarm. The fitness
function, defined in relation to the considered optimization
problem, is used to measure position optimality. The particles
update their velocities according to the following equation
during the searching process:

          0 1 1
1

i i bi i
v t w v t c r t p t p t   

                   2 2 g i
c r t p t p t  (12)

where  c1  and  c2  are  acceleration  constants  adjusting  the
relative velocities, with respect to the best global position and
local  position,  respectively,  r1 (·)  and  r2 (·)  are  random
variables in the range of  [0 1], which will provide a stochastic
weighting for each particle velocity term, and w0 is the inertia
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weight that can be predefined by the user. Finally, the new
position of each particle can be updated as in Equation (13):

     1 1  
i i i

p t p t v t    (13)

In general, the parameters of PSO are considered as
scaling  factors  to  determine  the  relationship  between  the
global best position and the best position of each particle,
referred to as the cognitive and social rates, respectively. The
parameters influence how much a particle updates its position
for each iteration. A tradeoff between the global and local
exploration  capabilities  of  the  swarm  is  determined  by  the
inertia weight w0, where a large weight allows better global
exploration, and a small weight leads to a fine search in the
solution space. In (12), the velocity at iteration T+1 is updated
for each particle in the swarm. The equation linearly combines
particle current velocity (at iteration T) with the distances that
separates the current particle position from its previous best
position and the best global position. Stopping criteria are
when the best value of the fitness function is a certain value
or the iteration has reached a predefined maximum number
of iterations.

2.7 Proposed PSO-WSVM classification

In this section, we describe the proposed PSO-WSVM
classification method for cardiac auscultation. The aim of
this system is to optimize a set of weighting factors for the
feature set, such that the highest accuracy of the classifier
can be achieved. The system is derived from an optimization
framework based on PSO. In order to classify heart sound
signal into two categories, normal and abnormal, the proposed
system  used  SVM  with  RBF  kernel,  which  proved  to  be
superior  method  to  cardiac  signals  (Phatiwuttipat,  2011).
We further defined PSO-WSVM into two types: continuous
and binary. In continuous case, the weighting factor could be
valued ranged from 0 to 1. In binary case, the weighing factor
only takes a value of 0 or 1.The position pi(t)  of each particle
Pi  in  the  swarm  is  viewed  as  a  feature  weighting  factor.
Let f (i) be the fitness function value associated with the ith

particle.  The  procedure  describing  the  proposed  PSO-
WSVM classification system for the heart auscultation is as
follows:

1. Initialization
1.1 Randomly generate an initial swarm of size S.
1.2 Set the velocity vectors    1, 2, ,

i
v i S   for

each particle in the swarm with a value of zero.
1.3 Train  an  SVM  classifier  and  compute  the

corresponding fitness function   f i  (i.e. the accuracy) of
each position  i

p t   for each  i
P t  in the swarm.

1.4 Select the best position from each particle with
its initial position as in (14):

  ,  1, 2, ,
bi i

p p i S   (14)

2. Optimization process
2.1 Determine  the  best  global  position  pg  from

particles  in  the  swarm  by  the  fitness  function  over  all

explored trajectories.
2.2 Update  the  velocity  of  each  particle  using

Equation (12).
2.3 Update  the  position  of  each  particle  using

Equation (13).
2.4 Train an SVM classifier and compute the cor-

responding fitness function f (i) for each candidate particle
   1, 2, ,

i
p i S  .

2.5 Update the best position pbi  of each particle,
if the corresponding position has a smaller fitness function
value.

3. Stopping Criteria
3.1 If not at maximum iteration, repeat the optimi-

zation process. Otherwise, continue step 4.
4. Classification

4.1 From the best global position pg  in the swarm,
train a WSVM classifier with the subset of weighted features
associated with pg.

4.2 Classify  the  heart  sound  signals  with  the
trained WSVM classifier.

For the binary case, a particle moves in a state space
restricted  to  0  and  1  on  each  dimension,  where  each  vi
represents  the  probability  of  bit  pi  taking  the  value  1.
As suggested in Nezamabadi-pour (2008), a logistic function
transformation   i

S v  could be defined as in Equation (15):

    1

1 i
i i v

S v Sigmoid v
e


 


(15)

where   i
S v   is a sigmoid limiting transformation. Instead

of using Equation (13) in the case of continuous PSO, the
position of each particle can be updated as in Equation (16):

          1 ,     1 1
i i

if rand S v t then x t   

                                             1 0 
i

else x t   (16)

where  rand( )  is  a  quasi-random  number  selected  from  a
uniform distribution in [0.1,1.0].

3. Results and Discussion

The proposed method was tested with 352 individual
labeled heart sounds in digitized WAV file format with 16 bits
resolution, mono sound and 8 kHz. The pathological heart
sounds  consist  of  208  samples  and  comprised  of  aortic
stenosis,  aortic  regurgitation,  mitral  stenosis,  and  mitral
regurgitation. The numbers of heart sounds in each type are
shown in Table 1. To evaluate the performance, ten-fold cross
validation is used, where the data is divided into ten portions
as follows:

1 2 10 ,   ;  i jData F F F F F i j     (17)

where Fi is the ith portion of the data. Then, in each fold Fi,
one portion is reserved for testing exactly once while the
remaining folds Li are used as a training set. The process con-
tinues until all portions are tested. Cross validation results
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can be evaluated by four numbers: True positive (TP): the
proportion of actual positives that are correctly identified;
False positive (FP): the proportion of actual positives that are
incorrectly identified; True negative (TN): the proportion of
negatives that are correctly identified; False negative (FN):
the proportion of negatives that are incorrectly identified.

In this experiment, positive means a heart with disease
and negative means a healthy heart. Performance rate can be
calculated by using sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV) and accuracy
in a confusion matrix. Sensitivity defines how well the classi-
fier can identify a diseased heart correctly, also called true
positive rate. Specificity means the tests ability to exclude
healthy  heart  from  diseased  heart  correctly.  The  accuracy
results show the proportion of correctly identified heart sound
conditions. The performance indicators can be calculated as

 
TP

Sensitivity
TP FN




(18)

TN
Specificity

FP TN



(19)

          
TP

Positive predictive value PPV or Precision
TP FP




(20)

         
TN

Negative predictive value NPV
FP TN




(21)

     

 

Correctly classified heart sounds
Accuracy

Heart sounds




(22)

The four outcomes and performance indicators can
be formulated in a confusion matrix as in Table 2. The results
of the proposed methods were compared with FFBP classifier
(Yuenyong, 2011), traditional SVM classifier (Phatiwuttipat,
2011), where all features are equally weighted, and GA based
SVM classifier (Banpavichit, 2013). The PSO parameters are
set  up  based  on  preliminary  experiment  as  shown  in  the
Table 3. The results of continuous PSO-WSVM and binary
PSO-WSVM are shown in Table 4 and 5, respectively. Table
6  shows  comparisons  of  the  proposed  method  with  other
classification methods.

As shown from the experimental results, both PSO-
based  WSVM  achieve  higher  classification  accuracy  than
traditional  SVM  and  FFBP.  The  results  came  from  the  fact

Table 1. Heart sound type in the training set.

Heart Sound Type Number of samples

Normal 144
Aortic Stenosis 52

Aortic Regurgitation 52
Mitral Stenosis 52

Mitral Regurgitation 52

Table 3. PSO setting parameters.

Parameters Values

Swarm size 50
The inertia weight w0 0.9

Acceleration constants c1 and c1 2
Maximum number of iterations 70

Table 2. Confusion matrix structure.

Table 4. Classification results of the proposed continuous
PSO-WSVM.
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Table 5. Classification results of the proposed binary PSO-
WSVM.

from the previous methods. The lower weighting factors of
the features mean weaker sensitivity for the system while the
higher weighting factors mean stronger sensitivity for the
system. The binary PSO-WSVM achieves the best classifica-
tion accuracy over the other methods since noisy features
with low impact on the classification can be omitted. Thus,
only the dominant features, which are sensitive for training
the classifier, are turned on.

Another indicator, which can be used to measure a
test’s  performance,  is  F-measure  value.  The  balanced  F-
measure or F1, which is the harmonic mean of precision and
sensitivity, can be calculated as

1
2

2
TP

F
TP FP FN


 

(23)

The F1 values for continuous and binary PSO-WSVM
are 94.15% and 95.22%, respectively, compared to 93.06% in
FFBP and traditional SVM classifiers and 94.15% in GA-SVM
classifier.

Table 7 shows computational time for each classifier
based on tested system, equipped with 2.7 GHz Intel Core i5
processor and MATLAB R2014b version. Heuristic based
SVM classifiers require longer computational time than FFBP
and traditional SVM. This is due to reiterative run of SVM
to update the weighting factor of the features. However, the
proposed system is designed for offline. Hence, slower com-
putational time has less impact on practical use.

Compared to the previous methods, reduction in FN
of the proposed method shows an improvement of classifica-
tion in the case of correctly classifies patients with abnormal
heart. The feature weighting factors with PSO emphasized on
the important characteristic of features in the heart sounds
while suppressed features that irrelevant to the system. This
led the system a better decision when classifying diseased

Table 6. Classification results comparison for FFBP-NN, traditional SVM, GA-SVM, continuous PSO-WSVM,
and binary PSO-WSVM.

                Method TP TN FP FN Sensitivity Specificity Accuracy F-measure

FFBP-NN 181 144 0 27 87.02% 100% 92.33% 93.06%
Traditional SVM 181 144 0 27 87.02% 100% 92.33% 93.06%
GA-SVM 185 144 0 23 88.94% 100% 93.47% 94.15%
Continuous PSO-WSVM 185 144 0 23 88.94% 100% 93.47% 94.15%
Binary PSO-WSVM 189 144 0 19 95.19% 100% 94.60% 95.22%

Table 7.  Computational time for each type of classifier.

Type of Classifier Computational time (sec)

FFBP-NN 430.1
Traditional SVM 30.1

GA-SVM 8404.2
Continuous PSO-WSVM 3521.1

Binary PSO-WSVM 5735.1

that the PSO algorithm can reduce the systems FNs, which
prevent  patients  from  not  knowing  they  have  the  heart
disease. Thus, this helps patient being treated in the early
stage of the disease. From Table 6, the FN results of conti-
nuous and binary PSO-WSVM dramatically decreased by
14.81% and 29.63% from 27 in traditional SVM and FFBP to
23 and 19, respectively. The binary PSO-WSVM has the
highest accuracy of 94.60%, which is improved by 2.27%
compared  to  traditional  SVM  and  FFBP  classifiers.  The
continuous PSO-WSVM has also gained 1.14% in accuracy
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heart  sounds  as  abnormal  hearts.  However,  the  system
cannot perfectly classify all the heart sound conditions and
wrong  decision  occurred  when  the  diseased  heart  sounds
are very similar to the normal heart sound as shown in the
remaining  FN.  It  could  be  concluded  that  the  method
proposed  by  this  study  obtains  promising  results  for  an
automatic cardiac auscultation classification system.

4. Conclusions

This paper presented a PSO based approach WSVM
to construct a weighted feature set for SVM in classification
of automatic heart sound analysis. The method is applicable
to a wide range of heart sounds, from healthy hearts to those
diseased hearts containing severe abnormal heart conditions.
The main objective of this system is to act as a cheap and
efficient  screening  system  so  that  patients  with  potential
heart disease can be identified. The proposed PSO-WSVM
took into account the degree of importance of each heart
sound feature and assigned diverse weights to the different
features.  Also,  the  proposed  binary  PSO-WSVM  further
omits noisy features and emphasizes dominant features with
strong sensitivity to be trained with SVM. The results of the
proposed method show that the accuracy of the system can
be improved with weighted SVM. Further research could be
to  combine  advantages  of  both  PSO  and  GA  optimization
techniques.  This  hybrid  PSO-GA  approach  could  deliver
more accurate search for the optimum weighting factor set.
Furthermore,  classification  on  individual  type  of  heart
diseases  can  be  obtained  using  a  multi-SVM  classifier,  to
further  identify  types  of  heart  disease  after  diagnosing
patients with heart diseases. Also, in binary-PSO, we could
examine other logistic function transformations that take the
previous  particles  position  into  account  for  updating  the
position of each particle in the swarm. Finally, the project will
be evaluated by a doctor from hospital to verify and compare
the record with the proposed method.
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