

ในช่วงหลายปีที่ผ่านมาได้มีการวิจัยอย่างกว้างขวางเพื่อพัฒนาเทคโนโลยีการทำความเย็นทางเลือกใหม่ที่มีความปลอดภัยกับสิ่งแวดล้อม การทำความเย็นแบบเทอร์โมอะคูสติกเป็นทางเลือกหนึ่งที่ใช้พลังงานเสียงในการเกลื่อนถ่ายความร้อน แต่ปัจจุบันสัมประสิทธิ์สมรรถนะทำความเย็นของเครื่องทำความเย็นแบบเทอร์โมอะคูสติกยังไม่สามารถแข่งขันกับของเครื่องทำความเย็นแบบดั้งเดิมได้ วิทยานิพนธ์นี้ได้ทำการจัดสร้างชุดสาขาวิชาทำการทำความเย็นแบบเทอร์โมอะคูสติก และนำเสนอทางเลือกใหม่ของการออกแบบที่เหมาะสมที่สุดเพื่อให้ได้ค่าสัมประสิทธิ์สมรรถนะทำความเย็นสูงสุด โดยใช้ขั้นตอนวิธีพัฒนารูปแบบหลายประชาร

ในส่วนแรกของวิทยานิพนธ์ ชุดสาขาวิชาที่จัดสร้างขึ้นเป็นชุดสาขาวิศวกรรมย่างดันทุนต่ำ ขึ้นส่วนหลักประกอบด้วยท่อแก้วบรรจุคิวياอากาศปกติ ลำโพงเครื่องเสียงที่หาได้ทั่วไป และสแตกที่จัดทำขึ้นเองจากแผ่นบางม้วนเป็นรูปก้นหอย ผลลัพธ์ของการศึกษาพบว่าชุดสาขาวิชาที่จัดสร้างขึ้นสามารถสร้างอุณหภูมิที่แตกต่างระหว่างปัจจัยร้อนและปัจจัยเย็นสูงสุด 5°C

ในส่วนที่สองของวิทยานิพนธ์ ได้ทำการพัฒนาโปรแกรมบน MATLAB เพื่อจำลองกระบวนการของการทำความเย็นแบบเทอร์โมอะคูสติกและแก้ปัญหาการหาค่าที่เหมาะสมที่สุดด้วยขั้นตอนวิธีเชิงพัฒนารูปแบบหลายประชาร ตัวแบบเชิงคณิตศาสตร์ของกระบวนการเรียนอยู่ในรูปของอนุกรมของสมการเชิงอนุพันธ์สามัญที่มีเงื่อนไขขอบสองด้าน ซึ่งใช้ระเบียบวิธีการยิงและการแก้สมการเชิงอนุพันธ์เชิงตัวเลขในการแก้ปัญหาเงื่อนไขขอบสองด้าน ในขั้นตอนการแก้ปัญหาค่าที่เหมาะสมที่สุด การคำนวณการขั้นตอนวิธีเชิงพัฒนารูปแบบและการแก้สมการเชิงอนุพันธ์ที่มีเงื่อนไขขอบสองด้านแยกจากกันจะใช้เวลาการคำนวณที่มาก วิทยานิพนธ์นี้ได้ทำการรวมการแก้ปัญหาเงื่อนไขสองด้านเข้าไปในขั้นตอนวิธีเชิงพัฒนารูปแบบ เพื่อให้สามารถแก้ปัญหาเงื่อนไขขอบสองด้านและทำการหาค่าที่เหมาะสมที่สุดในเวลาพร้อมกัน เป็นการลดเวลาการคำนวณ

ผลลัพธ์การศึกษาพบว่าขั้นตอนวิธีเชิงพัฒนารูปแบบหลายประชารที่ทำการปรับปรุงนี้สามารถหาค่าตัวแปรที่เหมาะสมที่สุดที่ทำให้ได้ค่าสัมประสิทธิ์สมรรถนะทำความเย็นแบบเทอร์โมอะคูสติกสูงสุดตามที่ต้องการ

In the recent years extensive research efforts have been made to develop alternative refrigeration technologies that are environmentally safe. Among of these is thermoacoustic refrigeration which uses acoustic power to pump heat. However, the efficient of performance of the thermoacoustic refrigerators currently is not competitive the traditional refrigerators. This dissertation constructs a demonstrator of the thermoacoustic refrigeration and presents an alternative optimization design approach based on the multi-population genetic algorithms to maximize the coefficient of performance of refrigeration.

In the first part of the dissertation, the constructed demonstrator is simple and low-cost. Its main components are a glass tube filled with normal air, a regular loudspeaker, and a hand-made spiral stack. The results show that the demonstrator is capable to create the temperature difference between the cold-end and the hot-end up to 5 °C.

In the second part of the dissertation, a set of MATLAB-based computer programs is developed to simulate a process of the thermoacoustic refrigeration and to solve the optimization problem using the multi-population genetic algorithm approach. The mathematical model of the process is written in the form of a series of differential equations with two-point boundary-value conditions. A shooting method with a numerical ODE solver is used to solve the two-point boundary-value problem. In solving the optimization problem, to separately execute the genetic algorithm and solve the two-point boundary-value problem is computational-time expensive. In order to reduce the computational time, this dissertation fuses the two-point boundary-value problem solver into the genetic algorithm such that the algorithm can solve the two-point boundary-value differential equations and carry out optimization in the same time.

The results show that the modified genetic multi-population algorithm is able to obtain the design variables that maximize the efficient of performance of the thermoacoustic refrigeration as desired.