

รหัสโครงการ: MRG5180062

ชื่อโครงการ: แพลทฟอร์มสำหรับการวัดอัตราการไหล อุปกรณ์สำหรับเครื่องมือทางการวิเคราะห์ทางเคมี

ชื่อนักวิจัย: ดร. กาญจนा อุไรสินธ์ มหาวิทยาลัยมหิดล

E-mail Address : sckur@mahidol.ac.th, u_kanchana@hotmail.com

ระยะเวลาโครงการ: 2 ปี

Abstract:

The miniaturization of automatically analytical devices usually involves fluid dynamics in tubular or microfluidic platform. Inner diameters (i.d.) of channels of these systems are normally in the range of 0.3 to 1.0 mm or even below 0.3 mm down to 50 μm . Since control of fluidic flow rates in this kind of system is important, the precise and on-line measurement of flow rate is essentially required. However, most commercial flow meters are suitable for the large scale fluid flows (i.d. \sim 10 to 1,000 mm) and do not fit with microfluidic devices.

In this work, development of flow meter for fluidic analysis system will be proposed in three detection systems which consist of ion-sensitive field effect transistor (ISFET), capacitively coupled contactless conductivity detector (C^4D) and light emitting diode (LED). In each detection system, the measurement of flow rate can be done by calculating the rate at which air bubble travels into two-arrayed meter or sensors which were placed at exactly distance. Comparison will be made amongst adoption of these three types of sensors in terms of range of fluid flow and accuracy.

อัตราการไฟลที่ให้ค่าความเที่ยงสูงเป็นสิ่งที่จำเป็นในระบบเหล่านี้ เนื่องจากการควบคุมอัตราการไฟลเป็นปัจจัยที่สำคัญต่อการวิเคราะห์ ถึงแม้ว่าในปัจจุบันจะมีเครื่องวัดอัตราการไฟลขายทั่วไปในห้องทดลองแต่เครื่องวัดเหล่านี้เหมาะสมสำหรับการไฟลในห้องซึ่งมีขนาดเส้นผ่าศูนย์กลางค่อนข้างใหญ่ คืออยู่ในระดับ 10 ถึง 1,000 มิลลิเมตร

ในงานวิจัยนี้จะนำเสนอการพัฒนาอุปกรณ์เพื่อวัดอัตราการไฟลสำหรับระบบการวิเคราะห์ของเหลว โดยอาศัยเครื่องตรวจวัดสารประ坡ก ได้แก่ ion-sensitive field effect transistor (ISFET), capacitively coupled contactless conductivity detector (C4D) และ light emitting diode (LED) ซึ่งอัตราการไฟลสามารถคำนวณได้จากการเคลื่อนที่ของฟองอากาศซึ่งเคลื่อนผ่านเครื่องตรวจวัดหรือเซนเซอร์สองตัวที่วางห่างกันเป็นระยะทางที่แน่นอน โดยในงานวิจัยนี้จะทำการเปรียบเทียบเซนเซอร์ทั้งสามชนิดโดยจะทำการพิจารณาในเรื่องช่วงอัตราการไฟลที่เหมาะสมสำหรับการใช้งานในเซนเซอร์แต่ละชนิดและความถูกต้องแม่นยำของอัตราการไฟลที่คำนวณได้