

ปัจจุบันความสนใจที่มีต่อสุขภาพและคุณภาพชีวิตมีมากยิ่งขึ้น การศึกษาวิจัยถึงคุณประโยชน์ของผลผลิตจากธรรมชาติ โดยเฉพาะอย่างยิ่ง ผัก ผลไม้ ซึ่งมีราคาไม่แพง และมีจำนวนอย่างมากที่จะศึกษาตัวเลือกผลไม้ที่มีในประเทศไทยเพื่อนำมาวิเคราะห์หาบริมาณอินูลิน และทำการเตรียมสารสกัดอินูลินจากเนื้อผลไม้ เพื่อนำมาทดสอบฤทธิ์การเป็นพรีไบโอติกส์ ผลการทดลองพบว่าผลไม้ที่ตัวเลือกมา คือ พุทราพันธุ์นมสด มะพร้าวพันธุ์สูง มะพร้าวน้ำหอม น้อยหนาหนัง ทุเรียนหมอนทอง ทุเรียนจะนี มะม่วงเขียวเสวย มะมุดพันธุ์ มะกอก มีอินูลินอยู่ในผลและเมื่อทำการวิเคราะห์เปรียบเทียบปริมาณอินูลินด้วยเทคนิค High Performance Liquid Chromatography พบว่ามีปริมาณอินูลินอยู่ร้อยละ 1.45 ถึง 5.78 โดยมะพร้าวแก่พันธุ์สูงให้ปริมาณอินูลินสูงสุด ส่วนพุทรานมสดมีปริมาณอินูลินต่ำที่สุด และไม่พบอินูลินในผลไม้โดยเลย สำหรับกล้วยพันธุ์ต่างๆ อีก 18 ชนิดที่ได้ทำการศึกษา พบว่า กล้วยน้ำมีองค์ประกอบปริมาณอินูลินสูงสุดถึงร้อยละ 12.23 ส่วนกล้วยเขียว กล้วยหักมูกเขียว และกล้วยน้ำ มีปริมาณอินูลินประมาณร้อยละ 7.69, 7.59 และ 6.11 ตามลำดับ โดยกล้วยเทพรส พบว่ามีปริมาณอินูลินต่ำที่สุดประมาณร้อยละ 0.92 สำหรับพันธุ์กล้วยที่นิยมบริโภคในประเทศไทยนั้น จากการทดลองจะเห็นได้ว่า กล้วยน้ำมีปริมาณอินูลินสูงสุดประมาณร้อยละ 4.07 ส่วนกล้วยหอม กล้วยไข่ กล้วยหักมูก และกล้วยเล็บมีองค์ประกอบปริมาณอินูลินลดลงตามลำดับ

เมื่อศึกษาในด้านประสิทธิภาพในการส่งเสริมการเจริญของเชื้อโปรดีไบโอติกส์ พบว่า กล้วยพันธุ์ต่างๆ ให้ผลไม้แตกต่างกันมากนัก ยกเว้นกล้วยหอม และกล้วยเล็บมีองค์ประกอบที่มีผลต่อการเจริญเติบโตของ *Lactobacillus plantarum* ชนิดที่ 16 ส่วนมะพร้าวแก่พันธุ์สูงและมะพร้าวอ่อนน้ำหอมสามารถคงปริมาณเชื้อได้กว่า 40 ชั่วโมงโดยมีแบบแผนการเพิ่มจำนวนของเชื้อไกล์เดียวต่อการเติมสารอินูลินมาตรฐานเป็นแหล่งคาร์บอน สำหรับการเจริญเติบโตของ *Bifidobacterium spp.* ที่แยกได้จากผลิตภัณฑ์เสริมอาหารนั้น พบว่าการให้สารสกัดอินูลินจากผลไม้ที่ตัวเลือกมาให้ผลต่อไกล์เดียวต่อการเติมอินูลิน ในส่วนการศึกษาความสามารถในการต้านเชื้อก่อโรคนั้น เมื่อทำการทดสอบฤทธิ์ของสารสกัดอินูลินจากผลไม้ต่อ *S. Typhimurium*, *S. aureus*, *E. coli* และ *P. aeruginosa* พบว่ามีผลต้านเชื้อที่ได้จากการเลี้ยง *L. plantarum* พร้อมกับการเติมสารสกัดกล้วยน้ำมีองค์ประกอบยับยั้งเชื้อทั้งหมดได้ดีที่สุดเมื่อเทียบกับการเติมสารสกัดชนิดอื่นๆ และเมื่อทำการทดสอบโดยวิธี broth microdilution assay พบว่า การเติมสารสกัดมะพร้าวอ่อน มะพร้าวแก่ มะมุด กล้วยสา กล้วยน้ำมีองค์ประกอบกล้วยเล็บช้างกุดในน้ำเลี้ยงเชื้อที่ได้จากการเลี้ยงเชื้อ *L. plantarum* หรือ *Bifidobacterium spp.* ให้ผลไม้แต่ต่างจากการเติมสารอินูลินมาตรฐานโดยตรง

โดยสรุป หากพิจารณาถึงผลไม้ที่มีศักยภาพที่นำไปศึกษาองค์ประกอบของน้ำตาลในผล และการสกัดแยกอินูลินบริสุทธิ์เพื่อจะพัฒนาต่อเป็นพรีไบโอติกส์นั้น พบว่า กล้วยน้ำมีองค์ประกอบปริมาณอินูลินสูงและพันธุ์น้ำหอม มีแนวโน้มที่จะให้ปริมาณอินูลินสูง ช่วยส่งเสริมการเจริญเติบโตของเชื้อโปรดีไบโอติกส์ รวมทั้งเพิ่มประสิทธิภาพในการต้านจุลทรรศน์ก่อโรคได้ดีที่สุด

Increasing concern on human health and quality of life comes into spotlight nowadays. Study on health benefits of natural products especially vegetables and fruits which are commonly available and inexpensive would urge the value and consumption rate of natural products. This study was aimed to investigate the inulin content in Thai fruits and determined their probiotic properties. The results showed that jujube (Nom sod), native coconut, aromatic coconut, sugar apple (Nung), durian (Mon thong), durian (Cha Nee), mango (Khiao sawoei), and sapodilla (Ma kok) contained some inulin about 1.45-5.78% as determined by high performance liquid chromatography. Native coconuts yielded the highest inulin content while jujubes (Nom Sod) contained very low level of inulin. There was no inulin content in taro. Additionally, a variety of 18 banana strains were also investigated and the results showed that banana (Nuew mue nang) gave the highest inulin content at 12.28%. Moreover, banana (Keaw), (Huk muk keaw), (Nam) had 7.69%, 7.59%, and 6.11% inulin content, respectively. Banana (Tep pha rod) contained the lowest amount of inulin at 0.92%. When compared among popularly consumed banana strains, the highest inulin containing banana was Nam wa which had about 4.07% inulin content. Banana (Hom), (Kai), (Huk muk), and (Leb mue nang) contained lesser amount of inulin, respectively.

There were no significant difference in the efficiency of promoting the growth of probiotics among various strains of banana with the exception of banana (Hom) and (Leb mue nang) that showed reduction of *Lactobacillus plantarum* growth after 16 hour. Native coconut and aromatic coconut could promote the growth of *L. plantarum* more than 40 hours and gave the same growth pattern as using the inulin standard as a carbon source. Ability of crude inulin extracts of selected Thai fruits could promote the growth of *Bifidobacteria* spp. isolated from a probiotic product similar to the control group added the inulin standard. Antibacterial activity of probiotics was also determined. The data demonstrated that *L. plantarum* supernatant collected after adding crude inulin extract of banana (Nuew mue nang) gave the best action against *S. Typhimurium*, *S. aureus*, *E. coli*, and *P. aeruginosa*. Broth microdilution assay revealed that adding crude inulin extracts of native coconut, aromatic coconut, sapodilla (Ma kok), banana (Sa), banana (Nuew mue nang), banana (Leb Chang Kud) in *L. plantarum* and *Bifidobacterium* spp. culture resulted in antibacterial activity as using the standard inulin.

In conclusion, banana (Nuew mue nang), native coconut, and aromatic coconut are potential fruits that can exhibit probiotic properties. They contain high inulin content, promote the growth of probiotic strains, and enhance antibacterial activity of probiotics. Future studies for sugar composition and purification of inulin are needed for development of these fruits as probiotic products.