

การลดทอนสัญญาณรบกวนบนคลื่นไฟฟาหัวใจโดยใชตัวกรองเชิงเลขแบบปรับตัวได

นายชลิต จิตตสวัสดิ์ไทย

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตร
วิทยาศาสตรมหาบัณฑติ

สาขาวิชาอุปกรณการแพทย ภาควิชาฟสิกสอุตสาหกรรมและอุปกรณการแพทย
บัณฑิตวิทยาลยั สถาบันเทคโนโลยีพระจอมเกลาพระนครเหนือ

ปการศึกษา 2549
ลิขสิทธิ์ของสถาบันเทคโนโลยีพระจอมเกลาพระนครเหนือ

ช่ือ : นายชลิต จิตตสวสัดิ์ไทย
ช่ือวิทยานพินธ : การลดทอนสัญญาณรบกวนบนคลื่นไฟฟาหวัใจโดยใชตัวกรองเชิงเลข
 แบบปรับตัวได
สาขาวิชา : อุปกรณการแพทย
 สถาบันเทคโนโลยพีระจอมเกลาพระนครเหนอื
ที่ปรึกษาวิทยานิพนธ : รองศาสตราจารยสุรพันธ ยิ้มมั่น
ปการศึกษา : 2549

บทคัดยอ

 ในปจจุบันระบบการสื่อสารโทรคมนาคม และระบบควบคุมไดมีการพัฒนาไปอยางมากทั้ง
งานดานอุตสาหกรรมและงานดานการแพทยแตในการพัฒนายังมีขอผิดพลาดที่จะตองแกไขโดย
เฉพาะงานดานการแพทย เชน การแสดงผลของเครื่องวัดคลื่นไฟฟาหัวใจ (ECG) ไดมีสัญญาณ
รบกวนเขามา ดังนั้นวิทยานิพนธฉบับนี้จึงไดศึกษาเกี่ยวกับการลดทอนคลื่นไฟฟาหัวใจ โดยอาศัย
โปรแกรมตัวกรองเชิงเลขแบบปรับตัวไดซ่ึงเปนตัวลดทอนสัญญาณรบกวนแบบปรับตัวเองจะใช
สมการอัลกอริซึมของลิสมันสแควรเออเรอร (LMS)ในการลดทอนจากโครงสรางแบบ FIR โดยจะ
ลดทอนคลื่นสัญญาณรบกวนในคลื่นไฟฟาหัวใจจําลองในยานความถี่ 50 Hz แสดงผลผานบอรด
TMS3210C3x อาศัยตัวโปรแกรมภาษาซีเปนตัวประมาณผล

(วิทยานิพนธนี้มีจํานวนทั้งสิ้น 113 หนา)

คําสําคัญ : ตัวกรองเชิงเลขแบบปรับตัวได, สัญญาณคลื่นไฟฟาหัวใจ

 อาจารยทีป่รึกษาวิทยานพินธ
Name : Mr.Chalit Jittsawadthai

Thesis Title : Noise Eliminate in ECG using Adaptive Filter
Major Field : Biomedical Instrument
 King Mongkut’s Institute of Technology North of Bangkok
Major Thesis Advisor : Associatc Professor Surapan Yimman
Academic Year : 2006

Abstract
 According to the communication and controlling systems have been developed
rapidly both of industrial and medical parts. There are some noises and errors that need to
improve especially ECG measuring equipment, medical equipment and other. This thesis presents
the studied of noise reduction by Digital Adaptive Filter program. Algorithm of Least Mean
Square is Used based on FIR structure for 50 Hz noise reduction from electrocardiogram (ECG).
The experimental results have been carried out by TMS320C3X board using C Programing
language.

(Total 113 Pages)

Key Words : Adaptive Filter, ECG

 Advisor

กิตติกรรมประกาศ

 วิทยานิพนธฉบับนี้เกิดจากองคความรูที่ไดศึกษามาตั้งแตหลักสูตรปริญญาวิทยาศาสตร
บัณฑิตจนถึงระดับปริญญาวิทยาศาสตรมหาบัณฑิตและที่สําคัญผูที่อยูเบื้องหลังแหงความสําเร็จ
หลายๆทานซึ่งจะตองกลาวขอบคุณและจารึกไวในวิทยานิพนธเลมนี้คือบิดานาวาอากาศเอกชูศักดิ์
จิตตสวัสดิ์ไทย มารดานางศฤงคาร จิตตสวัสดิ์ไทย พี่สาวนางศิริฉัตร กล่ินคลาย พี่ชายพันจา
อากาศเอกชีละ จิตตสวัสดิ์ไทย ซ่ึงเปนบุคลภายในครอบครัวผูใหการสนับสนุนทางดานทุนทรัพย
และการพิมพเอกสารสวนบุคลอื่นที่จะตองกลาวขอบคุณเปนอยางมากคือรองศาสตราจารยสุรพันธ
ยิ้มมั่น อาจารยพยุง เดชอยู และบุคลอีกทานหนึ่งที่จะไมกลาวถึง ณ ที่นี้ไมไดเลยคืออาจารย
สุกัญญา แพรสมบูรณ(นองสุ)ผูเสียสละเวลาเปนธุระชวยเหลืองานในดานตางๆทําใหผูเขียน
วิทยานิพนธทํางานสะดวกยิ่งขึ้นและหองทดลองปฎิบัติการเชิงเลขที่สนับสนุนเครื่องมือ, การพิมพ
เอกสารซึ่งเปนอุปกรณของภาควิชาฟสิกสอุตสาหกรรมและอุปกรณการแพทย

 สุดทายนี้ผูเขียนวิทยานิพนธใครขอกราบขอบพระคุณบุคคลตางๆที่ไดกลาวมา ณ ที่นี้
และขออํานาจบารมีคุณพระศรีรัตนตรัยจนดลบันดาลใหบุคคลเหลานี้จงมีชีวิตที่มีความสุขทั้งใน
ดานหนาที่การงาน, ชีวิตครอบครัว, ชีวิตสวนตัวและมีอนาคตที่กาวไกล หลังจากยื่นวิทยานิพนธ
ฉบับนี้ตอทางสถาบันแลวผูเขียนวิทยานิพนธก็คงเก็บความรูสึกปราถนาดีนี้เอาไวตลอด

 ชลิต จิตตสวัสดิ์ไทย

สารบัญ

 หนา
บทคัดยอภาษาไทย ข
บทคัดยอภาษาอังกฤษ ค
กิตติกรรมประกาศ ง
สารบัญตาราง ช
สารบัญภาพ ซ
บทที่ 1 บทนํา 1
 1.1 ความสําคัญและที่มาของโครงงาน 1
 1.2 วัตถุประสงคโครงงาน 1
 1.3 ขอบเขตของโครงงาน 1
 1.4 ระยะเวลาการดําเนนิการ 1
 1.5 วิธีการดําเนินโครงการ 2
 1.6 ประโยชนที่คาดวาจะไดรับ 2
บทที่ 2 ทฤษฎีและหลักการ 3
 2.1 อัลกอริธึมปรับตัวเองแบบลีสทมีนแสควร (Least Mean Square) 3
 2.2 การประยกุตใชงานตวักรองสัญญาณแบบปรับตัวเอง 8
 2.3 การคาดคะเนแบบปรับตัวเอง (Adaptive Prediction) 9
 2.4 การปรับระดับสัญญาณแบบปรับตัวเอง (Adaptive Equalization) 10
 2.5 การกําจัดสัญญาณสะทอนแบบปรับตวัเอง (Adaptive Echo Cancellatio) 12
 2.6 การกําจัดสัญญาณรบกวนแบบปรับตวัเอง (Adaptive Noise Cancellatio) 12

 2.7 ตัวกําจดัสัญญาณรบกวนแบบปรับตัวเอง 13
 2.8 ตัวกรองสัญญาณแบบเอฟไออาร (FIR) 16
 2.9 ตัวกรองสัญญาณแบบไอไออาร (IIR) 22
 2.10 การออกแบบตัวกรองดิจิตอลแบบไอไออารดวยวธีิประมาณคาเบี่ยงเบน 27
 2.11 การออกแบบตัวกรองดิจิตอลแบบไอไออารดวยวธีิการแปลงเชิงเสนคู 31
 2.12 การแปลงความถี่ (Frequency Transformations) 34

สารบัญ (ตอ)
 หนา

บทที่ 3 อุปกรณและวิธีการทดลอง 37
 3.1 การสรางสัญญาณรบกวนแบบปรับตัวเอง 37
 3.2 การสรางคลื่นไฟฟาหัวใจจากเครื่องวัดคลื่นไฟฟาหวัใจจําลอง 38
 3.3 การสรางสัญญาณรบกวนจากเครื่องกําเนิดสญัญาณ 39
 3.4 การรวมสัญญาณระหวางคลื่นไฟฟาหวัใจกับสัญญาณรบกวน 40
 3.5 อุปกรณการทดลอง 40
บทที่ 4 ผลการทดลอง 45
บทที่ 5 สรุปผลการทดลองและขอเสนอแนะ 55
 5.1 ผลการทดลอง 55
 5.2 ขอเสนอแนะ 55

เอกสารอางอิง 57
ภาคผนวก ก การใชงานบอรด TMS320C31 DSP STARTER KIT 59

 ก-1 ขั้นตอนการใชงานบอรด TMS320C31 DSP STARTER KIT 60
 ก-2 การเรียกใชหนาตาง Debugger 62
 ก-3 การใชหนาตาง Debugger 64
 ก-4 การใชเมนูชวยเหลือ 65
ภาคผนวก ข โปรแกรมภาษาซ ี 71

 ข-1 สวนประกอบของโปรแกรมภาษาซี 72
 ข-2 ตัวแปรและหนาที่ของตัวแปร 74

 ข-3 ชนิดของตัวแปรในภาษาซ ี 74

ภาคผนวก ค โปรแกรม MATLAB 87
 ค-1 เมตริกซและเวคเตอร 88
 ค-2 การกระทําของเมตริกซ (Matrix Operation) 89
 ค-3 การวาดกราฟ 94
ภาคผนวก ง โปรแกรมที่ใชทดลอง 99

 ง-1 การออกแบที่ 1 การจําลองโดยโปรแกรม Matlab 100
 ง-2 การออกแบบที่ 2 การสรางจริงโดยใชภาษาซ ี 102
ประวัติผูวจิัย 113

สารบัญตาราง

ตารางที่ หนา

 4-1 แสดงการเปรียบเทยีบความถี่ 45 Hz, μ มีคาตางๆดูอัตราการลูเขา 50

 4-2 แสดงการเปรียบเทยีบความถี่มีคาตางๆ, μ มีคา 0.001 ดูอัตราการลูเขา 53
 ก-1 แสดง Option ของ Debugger 62
 ก-2 การแกไขคําสั่ง 65
 ก-3 คําสั่งแกไขในบรรทัด 65
 ก-4 Command-Line Buffer Manipulation 66
 ก-5 การสั่งงานโปรแกรม 66
 ก-6 การแสดงผลและการเปลี่ยนแปลงขอมูล 67
 ก-7 การจัดการ Breakpoint 67
 ก-8 การโหลดโปรแกรม 68
 ก-9 Performing System Tasks 68
 ก-10 แสดงปุม Shortcuts ฟงกชันสําหรับหนาตาง DISASSEMBLY 68
 ก-11 แสดงปุม Shortcuts ฟงกชันสําหรับหนาตาง CPU 69
 ก-12 แสดงปุม Shortcuts ฟงกชันสําหรับหนาตาง MEMORY 69

 ก-13 แสดงปุม Shortcuts ฟงกชันสําหรับหนาตาง COMMAND 70

สารบัญภาพ

ภาพที่ หนา
 2-1 แสดงรูปแบบขั้นตอนการทํางานของ LMS (Least Mean Square) 8
 2-2 แสดงรูปแบบและสวนประกอบของตัวกรองสัญญาณแบบปรับตัวเอง 9
 2-3 แสดงตัวคาดคะแบบปรับตัวเอง 10
 2-4 แสดงตัวปรับระดบัสัญญาณแบบปรับตัวเอง 11
 2-5 แสดงตัวกาํจัดสญัญาณสะทอนแบบปรับตัวเอง 12
 2-6 แสดงตัวกําจดัสัญญาณรบกวนแบบปรับตัวเอง 13
 2-7 แสดงหลักการของตัวกําจดัสัญญาณรบกวนแบบปรับตัวเอง 14
 2-8 แสดงโครงสรางของเอฟไออาร 17
 2-9 แสดงผลตอบสนองอิมพัลสของเฟสเชิงเสนของตัวกรอง 4 ชนิด 20
 2-10 แสดงผลตอบสนองความถี่และผลตอบสนองอิมพัลสในทางอุดมคติ 21
 2-11 เปนโครงสรางตัวกรองไอไออารแบบตรง I (Direct Form I) 23
 2-12 เปนโครงสรางตัวกรองไอไออารแบบตรง II (Direct Form II) 24
 2-13 โครงสรางตัวกรองดิจิตอลแบบไอไออารที่มีโครงสรางแบบขนาน 25
 2-14 โครงยอยของตวักรองสัญญาณแบบขนาน 26
 2-15 แสดงความสัมพนัธระหวางสัญญารที่เปนชวง (Discrete Signal)
 กับสัญญาณที่ตอเนื่อง 27
 2-16 แสดงระบบอนาลอกที่มีฟงกช่ันถายโอนเปน H(S) 28
 2-17 แสดงระบบไมตอเนื่องที่มีฟงกช่ันถายโอนเปน H(Z) 28
 2-18 แสดงวงจรกรองความถี่ต่ําผาน (RC Lowpass Filter) 29
 2-19 แสดงโครงสรางตัวกรองดจิิตอลความถี่ต่ําผาน 1 ลําดับ 31
 2-20 แสดงโครงสรางตัวกรองดจิิตอลแบบไอไออาร 1 ลําดับที่ถูกสราง
 ขึ้นดวยวิธีประมาณคาเบี่ยงเบน 31

2-21 แสดงความสมัพันธระหวางคาที่อยูบนระนาบเอสกับคาที่อยูบนระนาบ
แซดและจากสมการ 33

2-22 แสดงขั้นตอนการออกแบบตัวกรองความถี่สูงผาน, ตัวกรองความถี่ผาน
 และตัวกรองชวงความถี่หยดุดวยการแปลงความถี่ 35

สารบัญภาพ (ตอ)

ภาพที่ หนา

3-1 รูปสัญญาณรบกวนแบบปรบัตัวเอง 38
3-2 รูปแสดงผลการวัดคลื่นไฟฟาหัวใจจําลอง 39
3-3 สัญญาณรบกวนจากเครื่องกําเนิดสัญญาณ 40
3-4 บอรด TMS320C3X 41
3-5 แหลงจายไฟ (Power Supply)กับเครื่องกําเนิดสัญญาณ 1 เครื่อง 41
3-6 ออสซิลโลสโคป (Osciloscope) 42
3-7 การตออุปกรณการทดลอง 42
4-1 การแสดงผลผานโปรแกรม Matlab 45
4-2 สัญญาณรบกวน 50 Hz 46
4-3 สัญญาณคลื่นไฟฟาหวัใจ (ECG) 47

4-4 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz , μ = 0.001 48

4-5 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz , μ = 0.002 48

4-6 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz , μ = 0.003 49

4-7 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz , μ = 0.004 49

4-8 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz , μ = 0.005 50

4-9 การแสดงผลผานบอรด TMS320C3X ความถี่ 50 Hz , μ = 0.001 51

4-10 การแสดงผลผานบอรด TMS320C3X ความถี่ 55 Hz , μ = 0.001 52

4-11 การแสดงผลผานบอรด TMS320C3X ความถี่ 60 Hz , μ = 0.001 52

4-12 การแสดงผลผานบอรด TMS320C3X ความถี่ 70 Hz , μ = 0.001 53
ก-1 แสดงการRUN โปรแกรม DSK3D เปนไปอยางถูกตอง 60
ก-2 แสดงหนาตาง Debugger ที่พรอมทํางาน 61
ก-3 หนาตางแสดงการโหลด DSK3D 61

บทที่ 1
บทนํา

1. รายละเอียดโครงงาน
1.1 ความสําคญัและที่มาของโครงงาน

ระบบการสื่อสารโทรคมนาคมไดมีการพฒันาไปอยางกาวไกลแตการพัฒนายังมี
ขอบกพรอง
ที่ตองแกไขในทางการแพทยเครื่องวัดคลืน่ไฟฟาหัวใจมักมีสัญญาณปะปน 50 Hz ที่เกิดจากไฟ
220 โวลตและความถี่อ่ืนๆที่อยูในสภาวะแวดลอมการทาํงานในทีน่ั้นๆ ดังนั้นปริญญานิพนธฉบับ
นี้จึงไดทํา
การทดลองลดทอนคลื่นสัญญาณปะปนจากคลื่นไฟฟาหวัใจจําลองโดยใชตวักรองสัญญาณเชิง
ตัวเลข แบบปรับตัวเอง และใชการประมวลผลผานบอรด TMS320C3X อาศัยภาษา C ในการ
ประมวลผล

1.2 วัตถุประสงคโครงงาน

1.2.1 ศึกษาคณุสมบัติโครงสรางของสมการลีสทมีนแสควรเออเรอร (LMS)
 1.2.2 ศึกษาคณุสมบัติรูปแบบของสมการ ตัวกรองสัญญาณเชิงเลขแบบปรับตัวเอง
 (Adaptive Digital Filter)
 1.2.3 รูจักถึงตัวประมวลผลสัญญาณดิจิตอล TMS320C3X

1.3 ขอบเขตของโครงงาน

1.3.1 ออกแบบตัวกรองสัญญาณเชิงตัวเลขแบบปรับตัวเอง โดยใชโปรแกรม MatLab
 1.3.2 จําลองการทดลองโดยใชโปรแกรม MatLab
 1.3.3 ทดลองจริงโดยใชคล่ืนไฟฟาหัวใจจําลอง ทดลองผานบอรด TMS320C3X
ประมวลผลโดยใชภาษาซ ี

1.4 ระยะเวลาการดําเนินการ

ระยะเวลาตั้งแต เดือนกนัยายน 2548 ถึง เมษายน 2549

1.5 วิธีการดําเนินโครงการ
การดําเนนิโครงงานแบงเปนขั้นตอนดังนี ้
1.5.1 ศึกษาและรวบรวมขอมูลเกี่ยวกับตวักรองสัญญาณเชิงตัวเลขแบบปรับตัวเอง
1.5.2 ศึกษาวธีิการ และภาษาใชในการเขยีนโปรแกรม
1.5.3 เขียนโปรแกรม และขอมูลตางๆ
1.5.4 ทดลองโปรแกรมและปรับปรุงแกไข
1.5.5 สรุปโครงงาน

1.6 ประโยชนท่ีคาดวาจะไดรับ
 1.6.1 สามารถนํารูปแบบของสมการ ตัวกรองสัญญาณเชิงเลขแบบปรับตัวเอง (Adaptive
Digital Filter) มาประยุกตใชงานกับเครื่องวัดคลื่นไฟฟาหวัใจได
 1.6.2 สามารถเขียนโปรแกรมภาษาซีนํามาประยุกตได
 1.6.3 สามารถประยุกตใชกบัสัญญาณปะปนในรูปแบบตางๆ ได

����� 2

��	
��
���������
��	������������	��

(Adaptive Digital Filter)

��������	�
��
������������������
����������
����������������� �
�������
����
!��"#����$��%����������&$
�������%' �������������(�������������� � ��)*��$�����
+�,���,*��'-�+���,*�
���#
�.��!,��/��%����
���������� ��)*�������
����������
�����
������ .,�(���#��0,"���,*��.��!'���#���&$ ��������1��.��!,��/��%����
�������������%� ���2�
����������3�.0�*��4$�����'��� #����.'�����3�5%����
����������&$
�"&�������
����'

2.1 ���
���*+,������	��
�������-,�.��/	�- (Least Mean Square)

�������3�.'�����
���
���,���.,�
�#
�� +�)�
����1.��� (LMS) �';��������3�.0�*��4$
"#����$��
���&�����
���4$������<�&���& e(n) .�#?��
���)*�'���#����.'�����3�5%����

����������"&��4$��)*���%����&#��.,�
�#
���������� (Mean Square Error) +�)� MSE �+$
.,#���*?��F&
�&��&$&���,

 β = E[e

2
(n)] (2-1)

E []
�&�!����1��';���4�*��1�'�'����������(ExpectationOperator) �';�#��#
�.#�&+
��

�� e(n) #)�#��<�����%���������,*�$����� #)� d(n) ���������������F�%����
���� #)� y(n)
&���,

e(n) = d(n) � y(n) (2-2)

+�)� e(n) = d(n) � w

t
(n)x(n) (2-3)

0�*�#��%�� w(n) #)���.'�����3�5��
�����,*�
���& V ��,��
�� �
��
������ (Weight Vector)

��#��%��

0�*�#��%�� wt(n) #)��������"����%���
������ w(n)
����.��� 2-3 ��.��!�%,���.��� 2-1 �+.��&$&���.��� 2-4

��&�2'�.���

e
2
(n) = (d(n) � y(n))

2

e
2
(n) = (d(n) � w

t
(n)x(n))

2

e
2
(n) = d

2
(n) � 2d(n) w

t
(n)x(n) + {w

t
(n)x(n)}

2

&���� ����&$
 β = E[e

2
(n)]

 E[e
2
(n)] = E[d

2
(n)] - 2E[d(n) � w

t
(n)x(n)] + [{w

t
(n)x(n)}]

2

�.)*���&�2'%���.����+.����&$



















−

=

1)w(L

w(1)
w(0)

w
�



















−−

−
=

1)(LXn

1Xn
Xn

x(n)
�

 (2-4)

"&��,* �';� Autocorretation Matrix %��& N × N
�&�
#
�.��.���3�%��
����#���������F�. (Sample) %������F� x(n)
�� []d(n)x(n)EP =

�';� Crosscorrelation Vector %��& N × 1
�&�#
�.��.���3������+
����������,*�$�����
d(n) �������������F� x(n)

 �����+���.'�����3�5�,*�';�#?����%���.��� 2-4 #)�

[] t

1n10 ...wwww −= ���������"&�����?�+�&#��
���&, ��%�� MSE �+$.,#���*?��F&

�$
�?����
�$�.���&������'�,

()
()

0
nw

==
∂
∂∇ ε

ε (2-5)

���.��� 2-5 ��,��
���.����) �<�
%��#��
���&, �� (Gradient of MSE Performance Surface)
0�*���.��!��&�.������2'%��#����.'�����3�5 #?���� w �&$.,4)*���,��
���.��� ����.��
(Normal Equation) &���,

P RW = (2-6)

 ����.��� 2-3 ��.��!+�#����.'�����3�5 ∗W �&$�� 2 ���	�� #)�
���,��4F&
(Block-By-Block) "&����'��.��#�� R
�� P �������F�0�*�
����';���
����� V
�$
���+�
#?��������'�,

PRW 1−= (2-7)

��
���,��#�� (Sample-By-Sample) 0�*����.�4$��������'n�����.,���	������?����
�';�
����.�
������ (Real Time) +�,���,*�����#?��
��,*�F����������+� 1−

R
�� P

[] (n)w(n)RtwP(n)tw2(n)2dE +−=β

[](n)tx(n)xER =

"&�����?��+$��2����2'
��%������?�0 ?� (Iteration) 0�*������+������'��.��#��
���&, ��
�4���&,�
���
�3,�����&4�0$��� (Steepest Descent) &���.�������'�,

(n)(n)W 1)(nW ∇−=+ µ (2-8)

 �������&$
��#�� 1)(nW + ��'���#���';���&��
���.#����%��
���&, ��%�� MsE, #��
µ ���.��� #)�%��&%� � (Stop Size) �';�#��#��,*.,<������!,��/��
�����������2��%$�%��
�������3�.�����'��.��#��
���&, ��)(n∇ �?�+����������3�.
��
����1.��� '��.��"&����

�?�+�&�+$#�� MsE, (ε) .,#��������� e2(n) 0�*�
�&�#��'��.��
���&, ���&$&���,

[]
2e(n)X(n)

(n)W

(n)e
(n)

2

−=
∂
∂

=∇ (2-9)

���.)*�
��#��'��.��
���&, ���,*�
���&V���.���(2.8) ���&$�������3�. Widrow v
Hoft LMS Algorithm &���,

(n)X(n)e2W(n)1)W(n µ+=+ (2-10)
 ������?�+�&#�����*.�$��?�+�����.'�����3�5����
������ (Weight Vector) W(0) ��.��!
�?�+�&�';�#���& V ��
�#���,*�$���?�+�&�+$�+.���.#)� #��%��&%� � (Step Size) µ
��)*�����.,<����#
�.��!,��
��#
�.��1
������2��%$�0�*�.,<����#
�.��.��!�������&��.
������%����
����&$
� ���#
�.��.���3���.�.�������.��!�?�+�&#��%��&%� � µ �&$
&���,

max

1
µ0

λ
<< (2-11)

 "&��,* λmax �';�#����1���1� (Eigen Value) �,*�+���F&%��
.����0� R
��#�� λmax
��.��!+�%���%��&$���

λmax < Tr [R] = Σ(Diagonal Elements of R) (2-12)

"&��,* Tr [] #)� ���� (trace) %��
.����0��& V
 #
�.��1
������2��%$� (Speed of Convergence) %����.'�����3�5��
����������
(Weight Vector) 0�*��';���
�?�+�&#
�.��.��!�������&��.������%����
����������
"&���
��������������.��!�2��%$��&$�.)*�#��#
�.��1
������2��%$��,*4$��,*�F&��.��!�?��+$��
����
�������2��%$��&$������ � #��#��,*�
�� (Time Constant) ���,�,*4$��,*�F&
�&��&$&���,

minµ

1

λ
=t (2-13)

 ����.���%$���$�
�&��+$�+1�
��#��#��,*�
���?�+�������2��%$�
'�<�<�����#��%��&%� �
µ
��#����1���1� (Eigen Valu)%�� Autocorrelation
.����0�0�*��
���,*4$��,*�F&��!2��?�+�&"&�

#�� λmin
 <�����?����%�����'�����
���"&��4$���'��.��#��
���&, �� (Gradient) �����&#��
<�&���& ��)*��������
'��'�,*�������	���F�.%����.'�����3�5��
�������������#��
Optimum ���/�
�#���
 (Steady State) #
�.!2��$��%����.'�����3�5���/�
�#���

��.��!
�&�&$���2'%��#��<�&���&0�*��������#���(�,*�+�)� Excess Mean Square Error

(Excess MSE = E[ε - εmin])
�� ���,�������3�.
��
����1.��� #�� Excess
MSE
�&��&$&���,

Excess MSE = µ Tr [R] εmin (2-14)

 "&��,* εmin #)�#�� MSE �*?��F&���/�
�#���
 ����.��� (2.13)
�� (2.14)
��.��!�4$�';��) �|���������)��%��&%� �µ %���������3�.
��
����1.��� ��)*��?�+�&
#F��.����%���������3�.��,*�
������������2��%$�
��#
�.��,*����� %����.'�����3�5��,�����#���,*
�+.�� �.�,*�F& (Optimum) ���/�
�#���

 "&��,*�����.��!��F'%� ��������?����%�� LMS (Least Mean Square) �&$&���,

7�8��� 2-1
�&��2'
��%� ��������?����%�� LMS (Least Mean Square)

%� ��,* 1 �F�.��)����
��%���� V +�#��%�� y(n) = wt(n)x(n)
%� ��,* 2 #?��
���.�2'
���.��� Adaptive Filter e(n) = d(n) v wt(n)x(n)
%� ��,* 3 Update #�� w(n+1) = w(n) + 2µ e(n)x(n)
%� ��,* 4 �'�?�0 ?�%� ��,* 2
�2'
������?������
��2'������, �'��)*�� V

2.2
����:;<
�-=�>
�.��	
��
���������������	��

 #F��.�����?�#��%����
����������
��'�����
��� #)� ��.��!�?�����&$�����.,
'�����3�<����/��

&�$�.�,*�.����#�&�&��&$
�������&��.����������F�0�*�.,���	��
�.����
'��'�,*����.�
���&$ �������� V 0�*���
����������
��'�����
���'����<��?���1�
&,������?��''���F����4$��� �&$
�� �����)*����, ��&��� (Radar) "0���� (Sonar), ����
#
�#F.
�����'��.
�<�/���2'
�� "&���*
�'%����
����������
��'�����
���

�&�&��/���,* 2-2 '�����&$
�����������F� x(n)
�� d(n) ������������F� y(n)
��
������#��<�&���& e(n) 0�*��';�<�����%���������,*�$����� d(n)
��������������F�
y(n) ��
����������
��'�����
�����.��!'���F����4$����&$+���
��4� ���������&�2'
��
%������F�
��������F� &����
�����
����� V ����'�,

 +

 d(n) e(n)

 x(n)

ε

H(Z)

d(n)

v

7�8��� 2-2
�&��2'
��
����
�'�����%����
����������
��'�����
���

2.3
��/�@/:�.���������	��
 (Adaptive Prediction)

 ��
#�&#���
��'�����
���
�&��2'
��&���2'�,* 11 '�����&$
��������,*��,*�
%$��
#)� d(n) �';�����������F�, x(n) �';�����������F��,*!2�+��
��
��, y(n) �';��������,*!2�
��$��"&����#�&#���%����
����������
��'�����
���
�� e(n) #)�������#��<�&���&%��
���#�&#���
 ����4$�����
��+��%�����#�&#���
��'�����
��� #)�����%$��+���������2& ��

����������
��'�����
���!2����
���+$�4$'��"�4��%�����.,#
�.��.���3����%��#��
�������F�.(Sample)���$�#,�����%���������2&0�*����&$%��&%��������#��<�&���&������
#�& #����, ��!2�#�&
����&��(Quantized)
��!2�����'�����
�����������)*��&�?��
�����+$�+.��
�.��.#
�.�$�����%���������������
��%������%$��+���, ��,��
�� ��&,�,0,��1.
(ADPCM 0�*������� Adaptive �Differential Pulse-Code Modulation) ��
#�&#���
��'�����

��������.��!�4$�?�+�����
����
�����*.��&��������
!�#
�.!,*
#� V 0�*�<�.�
.��2���
������'�'�#
�.!,*�
$���&$

Σ

ADAPTIVE
FILTER

FILTER

STRUCTURE

d(n)

x(n)

e(n)

y(n)

+

 v

 7�8��� 2-3
�&���
#�&#���
��'�����
���

2.4
�������:@�����������������	��
 (Adaptive Equalization)

 ��
'�����&��������
��'�����
��� '�����&$
� x(n) �';�����������F��,*����&$
0�*�.,�� ��������,*�$������
.���������'�'���4���������, d(n) ���';��������,*<������
#�&
��
�$
���,���%$�.2� (Data Mode) +�)��';�������'�'���,�. (Pseudo Random
Number) ���,'��� �'�. %����
���������� (Training Mode), y(n) �';�������0�*�<���
���'�����&��������
�$
�4$�';�����F�%�����#�&
��%$�.2��,*����&$
�� e(n) �';�������
#��<�&���&�,*���#��+�)�������.,���
�����&%��������	���
.���������'�'���#�'�����
%����
'�����&��������
��'�����
���
�&��&$&��/���,* 2-4

DELAY Σ

ADAPTIVE
FILTER

d(n)

x(n)

e(n)

y(n)

+

 v

7�8��� 2-4
�&���
'�����&��������
��'�����
���

���'�����&��������
��'�����
����';�����
�����,*�4$�?�+����?���&�����&��, �
%��

�.���2&
������.)*�.,������������<���4����������)*����0�*�!)� �';����'���F����4$��������

��%����
����������
��'�����
�����&$��"��#.��#.�.)*�.,������������	��<��� 4���
������ �����&��������������.�
��(TimeDispersive)�+$<�%��������	���,*����&$�.�4�&���
�� ��, ��)*�����4�����������
��+��.,���	���.����
'��'�,*����.�
��
���.���.��!�2$ ��
�+�$�
�&$&���� ���
'�����&��������%��4���������
��'�����
���(AdaptiveChannelEqualizer)���!2�
���
��4� ���)*���&������'-�+����
�����&%��������	�� (IntersymbolInterference)
��.,
����4$���������
$��%
���?�+������*.'�����3�<�%��4��������� �4�� �����"�������
��4���
������
���F0�*�.,
!�#
�.!,*�?���&

Σ

ADAPTIVE
FILTER

d(n)

x(n)

e(n)

y(n)

v

SLICER

NUMBER

PSEUDO

 RANDOM

 GENERATOR

DATA
MODE

TRAINING
MODE

+

7�8��� 2-5
�&���
�?���&���������$��
��'�����
���

2.5
��
S�T�@�������:�>�.���������	��
 (Adaptive Echo Cancellation)

 ��
�?���&���������$��
��'�����
��� '�����&$
� x(n) �';��������,*����&$���
�������, d(n) �';��������,*���&����
.%�����������$�� ����������,*�$�����������,
y(n) �';���������,��
�����������$��
�� e(n) �';��������,*�$������������
����
���������$���,*�+�)� �2'
��%����
�?���&���������$��
��'�����
���
�&�&��/���,* 2-5
������4$����&$.,����?��'�4$������?���&���������$�� ������)*����%��"�������<�������
������ V +�)���".�&. (MODEM) �,*�';������2�&2���1�0� (Full-Duplex) ����#
�.!,*��,��
������4$�����
�?���&���������$�����$����&�� ��� ����&$��%������

2.6
��
S�T�@�������:�.���������	��
 (Adaptive Noise Cancellation

 �2'
��%����
�?���&������'�'�
��'�����
���
�&��&$&��/���,* 2-6 '�����&$
�
d(n) �';�����������F�+���(PrimaryInput)'�����&$
��������,*�$������
.���������
'�'�, x(n) �';�����������F��$����� (Reference Input) ��
����������
��'�����
���
��'���.��������'�'�������F�+��� d(n) �&$�';������� y(n) �?��'�����������
����F�+������&$������������F�0�*��?���&������'�'����
�$
 ���,*�, #)� ������#��
<�&���&

Σ

ADAPTIVE
FILTER

d(n)

x(n)

e(n)

y(n)
v

ECHO
PATH

HYBRID

NEAR-END
SIGNAL

+
Σ

+
+

NEAR-END
SIGNAL

 ��
�?���&������'�'�
��'�����
����&$.,����?��'�4$�������?���&������'�'���
�#�)*����
�
�&�����$�%��+�
�� (Electrocardiography), ������'�'�����,���2&, ���
���
��&%��#�)*��0&�"��(Sidelobe)���������������
�%���������,�&��,*�
�����
�?���&������
'�'�
��'�����
��� ������
!����+�
%$�����'

7�8��� 2-6
�&���
�?���&������'�'�
��'�����
���

2.7 ��	
S�T�@�������:�.���������	��

��
�?���&������'�'��,*�������������'���4$������,�,*������'�'��';�
������.
(Additive Noise) [3] ������ � ��#�'������,*�?�#��%����
�?���&������'�'�#)� ��
����
������ 0�*��$�����������
���,*�+.���.�����+���4$��
�����������,*�.��+.���.���
�?��+$���&������'�'����*.%� � +�)����&�����&��, �
%���������&$������
����
����
��������.��!�?��&$ 2
�� #)�
��������.'�����3�5 (Fixed Filter)
��
��'�����
���
(Adaptive Filter)
����)*�����������
��"&��4$��
����
��������.'�����3�5���$���2$���	��
�.�����) �|��%��4����������,*������<���
���������'�,*��
'���&$��.�/��

&�$�.
������
������?��&$��� ��%���,*��
����
��'�����
�����.��!'�����.'�����3�5����&$ ���
�����������)���(������,�4$��
����
��'�����
���

NOISE SOURCE

Σ

ADAPTIVE
FILTER

d(n)

x(n)

e(n)

y(n)

+

 v

Σ

SIGNAL
SOURCE

+

+

7�8��� 2-7
�&�+������%����
�?���&������'�'�
��'�����
���

 +�������?����"&���*
�'%����
�?���&������'�'� (Noise Canceler) #)� �4$��
���
������+��*���
�?�+������������'�'� ��)*��4$�';�����F��$����� (Reference Input) 0�*���
<����%$���
����������
�$
�?��������,*�&$�'+���$�����������'�'�������F�+���
(Primary Input) 0�*����&$�������,*�$�����"&�'������������'�'�
 ���,�';���
�?���&������'�'�
��'�����
��� (Adaptive Noise Canceler) +������
�?����
�&���/���,* 2-7 �������,*�$����� S !2����<���4����������'�����
���������0�*���
������������'�'� no �%$�.�&$
�
���.���,*�
������ <��
.%���������� �����&$�';� s + no
�%$��,*����F�+���%����
�?���&������'�'� ��
���
�����������
�,* 2 ��������������'�'�
n1 0�*���,*�
������������'�'� no
���.���,*�
������������ s ��
�����������
�, ���';�
����F��$�����%����
�?���&������'�'� "&�������'�'� n1 ��<�����
����������
��
'�����
���
���+$������F��';������� y 0�*���!�&
��������'�'� no ��������$�#,��
����� � ������F��, ��!2�����'������������������F�+��� s + no
���+$������F�%������
#)� s + no v y

Σ

Adaptive
filter

+ v

Noise
source

Signal
source

Primary
input

System
output

e

Reference
input

Filter
output

 y

 �

�
s + n0

n1

e Error

Adaptive noise canceler

 ��/���,* 2-7 ���+1�
���������������F��$�������!2�'��.
�<�"&���
����������

��'�����
��� (Adaptive Filter) 0�*���.,���'���#����.'�����3�5 (Impulse Response) %��
��
���"&����"�.���<����������3�.
���,���
�#
��(LeastSquare)�&$
��LMS0�*�������������
������<�&���&(Error)���������F�%����
����&���� �&$
��������3�.�,*�+.���.��
������
��.��!�?����/����$�/������,*�'�,*��
'���&$
����.��!'�����
����&$����������)*����)*�#�
������<�&���&�+$.,#���*?��,*�F&
 ������
����'�����
��� (Adaptive Process)���?����������<�&���&�''���F���
�4$����������%� ����3��.4���%������ �����,%����
�?���&������'�'�
��'�����
���
�F&'����#�#)��$������+$������F�%������ s + no v y �+$<����$�#,���,*�F&��������� s ��
��
%���,���
�#
�� (Least Square) 0�*���.��!�?��+$�?���1��&$"&����'���������F�%��
���������'�����
����������
��'�����
��� 0�*��4$�������3�.
��'�����
��� (Adaptive
Algorithm) ��)*��&�?����������F��� �+.&%�������+$�*?��,*�F&&���� ������,��
�?���&
������'�'� ������������F�%��������+.��!��������<�&���&%������
����
'�����
���
 %$�#
�#?�������������
����
����������#)� ���$���2$
���������';�
���&��+
���
Statistical +�)� Deterministic ��)*���.��!��$���������?���&������'�'��&$ �����,�,
�..��
�� s, no, n1
�� y �';�������
�� Statistically Stationary
��.,#���(�,*��';��2���

���..��
�� s �.���,*�
������ no
�� n1
�� n1 .,#
�.��,*�
������ no ������F�%������
���';�&���,

e ons += (2-15)

��#���?�������%���.��� #)�

y)2s(ny)(nse o
2

o
22 −+−+= (2-16)

�.)*������1��';���4�*� (Expectation) �� ����%$��%�� (4.9)
�������#
�.��.���3��,*�?�+�&��
���
�� #)� s �.���,*�
������ no
�� y ���&$#����1��';���4�*� (Expectation) %�� e

2 &���,

]y)E[(n]E[s]E[e 2
o

2 −+= (2-17)

]E[y])nE[(s

]E[y)]ny(s2E[])nE[(s]E[e

22
o

2
o

2
o

2

++=

++−++=

���+1�
��#���?�������%�� E[s2] �.�.,<�������'�����
��)*��&#��%�� E[s2] 0�*�#���?����%��
������F����*?��F&�.)*�

]y)[(nE]E[s][eE 2
omin

22
min −+= (2-18)

�.)*���
����������'�����
��� ��)*��&#��%�� E[s2] �+$�*?��F& #�� E[(no- y)

2] ���&��&$
�0�*�
������F�%����
���� y ��%���� ������$�#,�����������'�'� no �,*����F�+���.���,*�F&
�������, �.)*�#�� E[(no- y)

2] �&���*?��F& #��%�� E[(e v s)2] ���&���*?��F&&$
� ������.)*�
���������.�.��� 2-15 ���&$
��

ynse o−=− (2-19)

�� ��, ���'�����
���%����
������������)*��&#���?����%��������F��+$�*?��F&�� ����&$<�&,��,���&
%� ���2����"#����$���,*�?�+�&
��#
�.��.��!�����'�����
���%�� ��
����������
��
'�����
����,*��)���4$ ���&������F��$������,*�?�+�&
 ������������F� e "&���*
�'��'�����&$
������� s �
����������'�'�
�����
�0�*�!2��?�+�&"&� no v y �����
������&#��%�� E[e

2] �������������&#�� E[no v y)
2]

(��� �����&#���?����%��������F� ����������';�����&#���?����%��������'�'�������F�
����������� s ��������F������#��,*��2� +�)� ��F'�&$
������&#���?����%��������F����';����
���*.#�� �������
�%�����������������'�'� (S/N ratio) ����.��� (5.0) ���+1�
��#���,*��1�
�,*�F&0�*��';��'�&$%��#���?����������F�#)� Emin[e

2] = E[s2] �.)*������.��!�?��+$#�� E[no v y)
2]

= 0 0�*��1#)� y v no
�� e = s �����,�, ����&#���?����%��������F� ���?��+$������
������F�'������������'�'�
��������������+��
���������,*����%$��������F��$������.�
��,*�
������������ �������,*����%$��������F�+������?��+$��
����������+�F&��
���
���.�
���*.������'�'��,* ������F�
�� �����,�, ������������F� y �����
�����������1���.�
��,*�
������������
����F�+��� (��� �#���?����������F����';�&���,

 (2-20)
�����,�, ��
����������
��'�����
����������.�&#���?����%��������F�"&�

�?�+�&�+$#����.

'�����3�5%����
������ �+.&�';��2��� 0�*����?��+$ E[y2] �';��2���

2.8 ��	
��
�����������]^����- (FIR)

���������.,#F��.����&���.���

∑
−

=

−=
1n

0k

k)h(k)x(ny(n) (2-21)

�%,���+$��2����2'
0&"&�.� (Z v domain) &���.���

k

1n

0k

zh(k)x(z)y(z) −
−

=
∑= (2-22)

+�)���.��!�%,���+$��2����2'%���-���4�*�!���"�����&$

k
1n

0k

zh(k)H(z) −
−

=
∑=

k21)z...h(k)x(zh(z)x(z)zh(1)x(z)zh(0)x(z)y(z) −−− +++= (2-23)
����.����,* 2-23 ��.��!�?��'�%,���';�"#����$���&$&��/���,* 2.8

7�8��� 2-8
�&�"#����$��%�����������

z-1

h(1)

x(n)

z-1

z-1

x(n-1)

x(n-2)

⊕

y(n)

h(0)

h(2)

h(n-1)

 ��
����
�������������&�';���
����������
������,�#���0,� (Non Recursive)
��)*������.�.,���'�������������&$��������F�
���������, ��
����������
�����������
���.,#F��.�����)*� V �,� #)�

2.8.1 ��.��!��$���&$�����.)*���,�����������
����������
2.8.2 .,#F��.���������������������';�
���4����$� (Linear Phase)
2.8.3 ��.'�����3�5�,*���&������#?��
���.,#���.�����+��*��?��+$��.��!��$��
��
 �?�����&$&,����
'��.
�<�
���F&�����.#��,* (Fix-point)
2.8.4 ��
����
���������������!,��/�� (Stable)
����� ��)*�����
��.,"����2�
 �,*�F&�?����& (Origin) �������
0&

�����������.���

)()(knxny −= (2-24)

�.)*��?����
'���2��,��� ���.��� (2.24) ���&$

)()(ϖϖ ϖ

jxejy
ktj−= (2-25)

�$��%$�����&$

ktj
ejH

jx

jy ϖϖ
ϖ
ϖ −==)(

)(

)((2-26)

����.��� 2-26 ��.,%��& (Magnitude) ������� 1
��.,���&���.���

ktϖϖθ −=)((2-27)

������.��� (2.27) 0�*��';��.���%�������.��!�?��'+�#��+��
���F�. (Group Delay) �&$
"&��?����+���F���3��.��� (2.27) ��,����� w ���&$�.���%��#��+��
���F�.&���.���

(2-28)

����.����,* (2.28) ���+1��&$
����
����������
�����������.,<��������������

�';��4����$� &���� � ��
����
����������� ���!2��?��'�4$���������
$��%
��
��!$��?�+�&
�.���<���������������+.����&$

 αKT = (2-29)

���&$
αw−=)(wθ (2-30)

+�)�!$�#��%��<���������������������

αwβ −=(w)θ (2-31)

β �';�#��#��,*

!$���
����.,�� �<�����������������
��#��+��
���F�.�';�
���4����$� ��.�.����,*
2-30 ���+$#��<����������.�����%����
�����';�
���..����
� (Positive Symmetry) 0�*�
<�����������������';��-���4�*�%��#
�.��
��
���� (Filter Length)

h(n) = h(N-n-1) �,* n = 0, 1,�,(N-1)/2
�� n �';��?��
�#,*

 �,* n = 0, 1,�,(N-1)/2
�� n �';��?��
�#,*

�� n �';��?��
�#2�

��!$���������.,<��������������&���.����,* (2.31) ���&$<����������.�����

%����
�����';�
���..����� (Negative Symmetry) &���.���








 −=

−−−=

2
1N

1)nh(Nh(n)

α

kt

d

kt)d(
d

−=

−
=

θ

ϖ
ϖ

θ








 −=
2
1N

α

"&��,*#�� N �';��?��
��?�&��%����
����
��

10 −≤≤ nn &���� � !$� N = 7 ���&$ h(0) = h(6), h(1) = h(5), h(2) = h(4)

��!$� N = 8 ���&$ h(0) = h(7), h(1) = h(6), h(2) = h(5), h(3) = h(4) ���
�.���%$���$���.��!�?��'�%,���';������&$ &���,

7�8��� 2-9
�&�<����������.�����%������4����$�%����
���� 4 4��&
������
����
����&������
����������� ���4$
�3,�2��,���0,�,�� (Fourier Series).��?�

������
���������/���,* 2-10

Centre of Symmetry
(N odd, Positive Symmetry) N = 13 (odd)

2 0 4 6 8 10 12
n

Centre of Symmetry
(N even, Positive Symmetry)

N = 12 (even)

2 0 4 6 8 10 12
n

Centre of Symmetry
(N odd, Negative Symmetry) N = 9 (odd)

2 0 4 6 8 10 12
n

Centre of Symmetry
(N even, Negative Symmetry) N = 10 (even)

2 0 4 6 8 10 12
n

7�8��� 2-10
�&�<��������#
�.!,*
��<����������.�����������F&.#��
(a)
�&�����������#
�.!,*%����
����#
�.!,*�*?�<���������F&.#��
(b)
�&�<����������.�����%����
����#
�.!,*�*?�<���������F&.#��

��
�����,*.,<�����������#
�.!,* HD(ϖ) ��.��!+�#��<����������.����� ND(n)
�&$���#
�.��.���3�%�����
'������%���2��,��� &���.���

dw(w)eH
2

1
(n)h jwn

Dd

π

ππ −
∫= (2-32)

����������/���,* 2-9 0�*��';�����
�&�����������#
�.!,*%����
����#
�.

!,*�*?�<���.,#
�.#��-��� #)� Wc "&� Wc �, ���';�#
�.!,*����.����0� (Normalized
Frequencey) 0�*�.,#��

s

c

c

f

f
f

fw

=

= π2

π2

)w(H D

w (normalized) -we 0 we π2 π2

HD(n)

(b) n

"&� ƒ #)� #
�.!,*#��-�������.����0� (Normalized Cut off Frequency)

 ƒc #)� #
�.!,*#��-��� (Cut off Frequency (Hz))

 ƒs #)� #
�.!,*�F�. (Sampling Frequency (Hz))

�������/���,* 2-10 ���+1��&$
��#�� HD(ω) ��.,#��������� 1 ��4�
��� �
�� -(ω)c

��!�� +(ω)c &���� �#��%��<����������.�����%��/���,* 2-10 (a) ��+��&$����.���

 (2-33)

 (2-34)

 (2-35)
��)*�����#��<����������.������� �.,#
�.�..������ &���� ������+�#�����?����

+���,��#��*�+��*��1�� �4�� !$��$�����+�<����������.����� n = 53 ���?����+�#�� n �� �
��
0 ��!�� 26 ��
�#�� -1 ��!�� -26 �� � �.��?��';��$��+���)*�����#
�.�';��..�����*����

2.9 ��	
��
���������^�^����- (IIR)

 #F��.�����?�#��%����
����
���������� #)��+$<�����������#
�.!,*�&$#. (Sharp-
Cutoff Frequency) 0�*�&,�
����
����
����������� ��)*������.�������������-���4�*��';�
��

��4�*�
�� (Rational Function) .,�� �"�� (Pole)
�� 0,"�� (Zero) ��.��!'�����)��#���&$
��������
������.��$���4$�����&��� (Order) �2�
�����&$��
�����';�
�����#�4�� (Recursive)
#F��.�����.��';��4����$�
����!,��/���.�&, ������
���?��&$��� �-���4�*�!���"�� (Transfer
Function) %����
����
�����������%,���';��.��� #)�

∑

∑
−

=

=

−

−

+

= 1n

1k
kzka1

n

0k
kzkb

H(z) (2-36)

+�)���&�2'
���.��� �%,���+.��&$#)�

π
π

n

fn
nhD

)2sin(
)(=

fn

fn
nhD π

π
2

)2sin(2
)(

×
=

dwedwenh
nj

c

c

nj

D

ϖ
ϖ

ϖ

ϖ
π

π ππ −−
∫=×∫=

2

1
1

2

1
)(

mzm...a1a.z1

nzn...b1zbbH(z) 10
−−

−−

++

++
= (2-37)

�?��'��&���.���� V �+.�
���%,����2����2'�.���<����� (Difference Equation)

����.����,* 2-37 ��.��!�?�.��%,���';�"#����$����/���,* 2-11 �';�"#����$��
�� Direct
Form I

7�8��� 2-11
�&�"#����$��
����� I

∑ ∑

∑∑

= =

−−

==

−

−−−+++

−

=

=

=

−−−−

−−

n

0k

m

1k
k)(nyka

k)(nxkbY(n)

kz(z)yka...1z(z)y1a
kz(z)xkb...1z(z)x1b(z)x0bY(z)

m

1k
kz(z)yka

n

0k
kz(z)xkbY(z)

x(n)

z-1

z-1

b0

⊕

z-1

b1

b2

b3

bn-1

z-1

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
z-1

z-1

-a1

z-1

-a2

-am-1

-am

y(n)

All - Zero System

All - Pole System

bn

m
m1

0

(z)

(z)
(z) z...a1za1

nznb...1z1bb
W
W

H
−−

−−

++

+++
×=

m

zmzzz
zwazwaXW

−− −−+=
)(

1

)(1)()(
...

m
(z)m

1
(z)(z)(z)

m
1

1

1
10

(z)
(z)

zwa...Zw1aXX

mza...za1

nznb...zbb
W

W

X

Y
H (z)

(z)

(z)

−−

−−

−−

+++=

+++

+++
== ×

n
(z)

1
(z)(z)0(z) zwnb...zw1bwbY −− +++=

`>�.S� /a����@�,
����
 2-37 T:^@>

 (2 -38)

 (2-39)

 (2-40)

 ����.���%�� 2-38
�� 2-40 ��.��!�?�.��%,���';�"#����$���&$&��/���,* 2-12
��,��
��"#����$��
�� Direct Form II

(z)

(z)

W
W

7�8��� 2-12
�&�"#����$��
����� II

����)*�������
����&�������,*.,"#����$��
�� Direct Form I �.)*�.,�?��
��?�&�����*.%� �

��.,#�������&��.�# (Dynamic Range) %����.'�����3�5.��%� � ����
#)�#����.'�����3�5�����.
a ��.,#��.��
����.'�����3�5�����. b ��.,#���$���?��+$�';�'-�+������.�� "&��(����������*�
!$��4$��
'��.
�<�
���F&�����.#��,* (Fixed Point) &���� � ������4$������� V �����.��!
'���"#����$��%���.����+.��&$�';� Direct Form II

x(n)

z-1

z-1

z-1

b1

bn

⊕ ⊕
-a1

-an

y(n)

b2
 ⊕ ⊕

-a2

bn-1
 ⊕ ⊕

-an-1

⊕ ⊕

⊕

⊕

⊕

7�8��� 2-13 ���������,*.,"#����$����
��%���

 ��/���,* 2-13 ���+1��&$
����
����������
�����������,*.,"#����$���';�
��%����,
��'�����&$
� H1(z), H2(z), Hk(z), H(z)
������
��.,"#����$����/���,* 2-14 �����&
"#����$����
����������
���������� �';�
��%������+$<�&,#)�

2.9.1 �����&��.�#%����.'�����3�5.,#���$���?��+$�.��';�'-�+��.)*��4$�����

'��.
�<�
���F&�����.#��,*

2.9.2 �';��������3�.�,*�+.���,*���4$�������'��.
�<�������&������
��%����,�
&$
�

x(n)

Hk(Z)

y(n)

H2(Z)

H1(Z)

C

7�8��� 2-14 "#����$������%����
����������
��%���

x(n)

Z-1

y(n)
 ⊕

⊕

⊕ ⊕

-a12

-a11

b10

H1 (Z)

Z-1

b11

⊕

⊕ ⊕

-a22

-a21

b20

H2 (Z)

Z-1

b21

Z-1

⊕

⊕ ⊕

-ak2

-ak1

bk0

Hk (Z)

Z-1

bk1

Z-1

C

����
�����	
��
@�T�������^�^����-

��.��!����?��&$ 4
�3,
1.
���
��"��-0,"� (Pole-zero placement)
2.
��'��.��#����,*����� (Approximation of derivatives)
3.
����.��������
����0� (Impulse invariance)
4.
�����
'���4����$�#2� (Bilinear transform) [4]

�?�+������?����, ������
��,�� 2
�3, #)�
�3,�,* 2
��
�3,�,* 4 ������ �
�3,�,* 1
��
�3,�,* 3

���.�����
!��

2.10
����
�����	
��
@�T�������^�^����-@>	;	�*���:,��/c�����;
��.

 �';�
�3,���+��*��,*�4$
'�����"&�.��'�2�
0&"&�.� �������/���,* 2-15

7�8��� 2-15
�&�#
�.��.���3���+
����������,*�';�4�
� (Discrete Signal)
 ����������,*�����)*��

���/���,* 2-15 ����
��

 (2-41)

�?�+�&�+$����+�����+
��� n ��� n + 1 ������� T
��������� ∆t &���� � � �
���& V ���&$
t = nT

t
y(t)

dt
dy(t)

∆
∆

=

t.n
t

T

y(t),y(n)

T
T)-y(nT-y(nT)

dt
dy(t)

= (2-42)

T #)�������F�. (Sampling Rate) +�)�����%,���+$��2����2'#
�.!,*�F�., �1�&$ 0�*�#�� T �,
��.,#����������F�4�
�

(2-43)

�?�+�&�+$
dt

dy(t) �';�������F�%�������������,*.,�-���4�*�!���"�� H(s) = S "&�.,����F�

�';� y(t)

7�8��� 2-16
�&������������,*.,�-���4�*�!���"���';� H(s)

������.����,* 2-43 �?�+�&�+$ �';�������F�%�������.������)*�� (Discrete)

"&�.,����F��';� y(n)
��.,�-���4�*�!���"���';� H(z) ���&$

 7�8��� 2-17
�&������.������)*���,*.,�-���4�*�!���"��������� H(z)

���/���,* 2-17 ��
��������F�%�������.������)*��#)�

T
1

s =f

T
1)-y(n-y(n)

dt
dy(t)

=

H(s) = S
dt
dy(t)y(t)

T
1)-y(n-y(n)

H(z) = ?
T

1)-y(n-y(n)y(n)

(2-44)

�����/���,* 2-16 ������F�%��������������.,#���������

(2-45)

� �F&�& V ��������/���,* 2-15 y(n) ��.,#��������� y(t) ���&$

(2-46)

(2-47)

(2-48)

T
)Z(1H(z)

T
)y(z)Z(1H(z)y(z)

T
y(z)Zy(z)H(z)y(z)

1

1

1

−

−

−

−

−

−

=

=

=

⋅

⋅

y(t)H(s)
dt

dy(t) ⋅=

H(z)H(s)

y(n)H(z)y(t)H(s)

T
y(t)-y(n)

dt
dy(t)

=

=

=

⋅⋅

T
)z-(1H(z)S,H(s)

1-

==

ST-1
1Z =

aS
aH(s)
+

=

�������
���&��/���,*2.18

7�8��� 2-18
�&�
�������#
�.!,*�*?�<��� (RC Lowpass Filter)

���/���,* 2-18
�����.,�-���4�*�!���"��&���.���

(2-49)

�?�+�&�+$ ���&$

(2-50)

RC
1S

RC
1

H(s)
+

=

RC
1a =

y(t) x(t) R

C

w

w

aT)(1
Vo(z)Z

aT)(1
aTVi(z)Vo(z)

Vo(z)ZaTVi(z)aT)Vo(z)(1

Vo(z)ZaTVi(z)aTVo(z)Vo(z)

aTVi(z)Vo(z)ZaTVo(z)Vo(z)

Z-aT1

aTH(z)

1

1

1

1

1-

+
+

+
=

+=+

+=+

=−+

+
=

−

−

−

−

1MVo(z)ZKVi(z)Vo(z)

1)MVo(nKVi(n)Vo(n)

aT)(1
1M,

aT)(1
aTK

−+=

−+=

+
=

+
=

����.����,* 2-44 ���&$ H(z) .,#��&���.����,* 2-50

(2-51)

(2-52)
�?�+�&�+$

(2-53)
(2-54)

������.����,* 2-54 �?��'�%,���';�"#����$���&$&��/���,* 2-19

7�8��� 2-19
�&�"#����$����
����&������#
�.!,*�*?�<��� 1 �?�&��

+
Z-1

vi(Z) voZ)

M

K

aS
bH(s)
+

=

bx(t)ay(t)
dt

dy(t)
=+

y(t0))(yy(t) d
t

t0

t
+= ∫ ττ

������.����,* 2-54, Vo(z) �?��'�%,���';�"#����$���&$&��/���,* 2-20

7�8��� 2-20
�&�"#����$��%����
����&������
���������� 1 �?�&���,*!2���$��%� �&$
�

�3,'��.��#����,*�����

2.11
����
�����	
��
@�T�������^�^����-@>	;	�*�
�����
���
��>./ac

 ���
'���-���4�*������"&�.��'�2�
0&"&�.�&$
�
�3,�4����$�#2���.��!����?��&$"&��4$
��%��
�1�'�0��&�&�� (Trapezoidal) ���������
����
�������� �,*.,�-���4�*�!���"�� H(s)
&���.����,* 2-55

(2-55)

����-���4�*�!���"����.�.����,* 2-55 �, ��.��!��&�+$��2����2'�.����4����F���3��&$&���.����,*
2.56

(2-56)

����F���3����.��� 2-56
��'��.��#��&$
�
�1�'�0��&�&���&$&���.����,* 2-57

(2-57)

+
Z-1

x(n)

y(n)

0.4208

0.158

�.)*� y(t)
����F���3�%�� y(t) ���'��.��#��%�������������� ���.����,* 2-56 &$
���%��

�1�'�0��&�&���,* t = nT
�� t0 = nT-T ���&$

(2.-58)

&���� �!$�
�� t = nT ���.����4����F���3��,* 2-56 ���&$

(2-59)

�?��.����,* 2-56
�������.����,* 2-58
��
�� y(n) = y(nT), x(n) = x(nT) ���&$

(2-60)

�4$���
'��
0& (Z-Transform) �'�,*���.���<����� (difference equation) ���.����,* 2-59
���&$

(2-61)

��,����.'�����3��.����,* 2-55 ����.����,* 2-61 ���&$

(2-62)

T)y(nTT)](nTy(nT)[y
2
Ty(nT) tt −+−+×=

(nT)(nT)(nT)y t
bxay +−=

1)](n(n)[
2
bT1))y(n

2
aT

-(1-)y(n)
2
aT

(1 x −+×=−+

()
() a

Z1
Z1

T
2

bH(z)

aT/2)Z(1(aT/2)1
)Z(bT/2)(1

X(z)
Y(z)H(z)

)X(z)Z(1
2
bTY(z))Z

2
aT(1)Y(z)

2
aT(

1

1

1

1

11

+
+

−
×

=

−−+

+
==

+=−−+

−

−

−

−

−−

)ZT(1
)Z2(1S 1

1

−

−

+

−
=

 �����
.�������������'�2������
0&&$
�
�3,
'���4����$�#2� ����
��#���,*��2����%
�
%�������������'��2����
���.+��*�+��
��������
0&#���,*��2����0$��%�������������'
��2�/����
���.+��*�+��
�
��#���,*��2���
������/�� ���'��2�����$����
�%��
���.+��*�
+��
��������
0& &��
�&�&��/���,* 2-21

7�8��� 2-21
�&�#
�.��.���3���+
���#���,*��2��������������#���,*��2�

 �������
0&
������.���

 (2-63)

(2-64)

(2-65)

(2-66)

(2-67)

()
()

()
()

()
()










++
+

+
−

×=

+

−
×=

+
−

×=

−
×=

+

+ −

−

2rcoswTr1
2rsinwTj

2rcoswTr1
1r

T
2S

1re
1re

T
2S

Z1
Z1

T
2S

Z1
Z1

T
2S

22

2

jwT

jwT

1

1

Ωσ jS
reZ jwT

+=

=

jwTreZ =

0Re Re

Im(=jω)

s-plane z-plane

Im

0

�.)*���,����.'�����3�5�.����,* 2-63 ����.����,* 2-67 ���&$

(2-68)

(2-69)

 ����.����,* 2-68
���.����,* 2-69 ����
��!$� r < 1, σ < 0
��!$� r > 1, σ > 0
��*��1+.��#
�.
��#���,*��2����0$��%���������� ���'��2�/����
���.+��*�+��
���������0�

��#���,*��2����%
�%���������� ����2����
���.+��*�+��
��������
0&
��!$�

 r = 1, σ = 0 #���,*��2���
������/���������������'��2�����$����
�%��
���.���.,+��*�
+��
��������
0&
���.)*� r = 1 �.����,* 2-67 ���&$ Ω .,#��&���.����,* 2-70
�� 2-71

(2-70)

(2-71)

��<� %� ����������
����
����&������
����������&$
�
�3,
'���4����$�
��#2�
1. ���
����
����#
�.!,*
��������"&����+��-���4�*�!���"�� H(s)
2. +�#
�.!,*#��-���+�)�#
�.!,*%��
!�<���%����
����#
�.!,*
��&������

3. +�#��

4. �?�����#
�.!,* (Frequency scaling) H(s) "&�
��#��
Ω

SS =

5. +�#�� H(z) "&�
��#�� S ��.�.����,* 2-61 "&��'�,����,��&2#�� S ����.����,*
2-62

2rcoswTr1
2rsinwT

T
2

2rcoswTr1
1r

T
2

2

2

2

++
×=

++
−

×=

Ω

σ

2
wTtan

T
2

coswT1
sin wT

T
2

=

+
×=Ω

Ω

2
wTtan

T
2 ×=Ω

2.12
�����
/	�,`�� (Frequency Transformations)

 �������$����
����4��&�)*� V �4�� ��
����#
�.!,*�2�<���, ��
����4�
�#
�.!,*<���, ��

����4�
�#
�.!,*�.�<��� ��.��!����?��&$��.�&��
��. &��/���,*2-22

7�8���2-22
�&�%� ����������
����
����#
�.!,*�2�<���,��
����#
�.!,*<���
����
����4�
�
 #
�.!,*+�F&&$
����
'��#
�.!,*

 ���
'��#
�.!,*%����
����#
�.!,*�2�<��� (High-pass Filter) ��
��#��
���� H(s) %����
����#
�.!,*�*?�<��� (Low-pass Filter) ���
'��#
�.!,*%����
����#
�.!,*
�*?�<��� ���
'��#
�.!,*%����
����4�
�#
�.!,*+�F& (Brand-stop Filter)

 ��
��#��

���� H(s) %����
����#
�.!,*�*?�<��� �.)*� Ωo = ΩL ΩH
�� ΩB = ΩH ΩL

HP, BP, or BR
requirements

LP
requirements

TLP(s)
requirements

THP(s)
TBP(s)
TBR(s)

S
S c

Ω
=

2
o

2
B

S

S
S

Ω

Ω

+
=

บทที่ 3
อุปกรณและวิธีการทดลอง

3.1 การสรางสัญญาณรบกวนแบบปรับตัวเอง

การสรางสัญญาณรบกวนแบบปรับตัวเองเราจะใชรูปแบบของสมการไซน(sine) ซ่ึงจะม ี
โครงสรางของสมการสามารถหาคาสัมประสิทธิ์ไดดังนี ้

W = 2*pi*Fsin;
A = 2*cos((w*p));
B = 1.0;
C = sin((w*p));
Y = A*y1-B*y2+C*imp;
y2 = y1;
y1 = y;

 เมื่อกําหนดโปรแกรมลงบนภาษาซีแสดงผลผานบอรด TMS320C3X จะไดคล่ืนสัญญาณ

อยูในรูปของไซน (sine)

ภาพที่ 3–1 สัญญาณรบกวน

3.2 การสรางคลื่นไฟฟาหัวใจจากเครื่องวัดคล่ืนไฟฟาหวัใจจําลอง
 เราจะสรางคล่ืนไฟฟาหัวใจจากเครื่องวัดคลื่นไฟฟาหัวใจจําลอง โดยกําหนดใหอัตราการเตน
ของหัวใจเทากับ 60 คร้ัง/นาที จะไดสัญญาณแสดงผลดังรูป

ภาพที่ 3–2 แสดงผลการวัดคลื่นไฟฟาหวัใจจําลอง

3.3 การสรางสัญญาณรบกวนจากเครื่องกําเนิดสัญญาณ
 เราจะสรางสัญญาณรบกวนจากเครื่องกําเนิดสัญญาณในรูปแบบสัญญาณไซน (sine) ซ่ึงจะนํา
สัญญาณรบกวนนี้ไปรวมกับคลื่นไฟฟาหัวใจจําลอง โดยใชการตอวงจรแบบ Summing จะได
สัญญาณดังรูป

ภาพที่ 3–3 สัญญาณรบกวนจากเครื่องกําเนินสัญญาณ

3.4 สรุปรูปแบบของการทดลอง
 1. สรางสัญญาณรบกวนจากเครื่องกําเนิดสัญญาณ
 2. สรางคลื่นไฟฟาหวัใจจากเครื่องกําเนิดคลื่นไฟฟาหัวใจจําลอง
 3. ตอสัญญาณจากขอ 1 และขอ 2 เขาสูวงจร summing
 4. ตอสัญญาณจากวงจร summing เขาสู input ของบอรด TMS3210C3X
 5. สรางสัญญาณ nose referenc ในโปรแกรมภาษาซี
 6. ใชรูปแบบของสมการ Adaptive Filter อาศัยอัลกอริธึมแบบลีสมีนแสควร โดยนําคา
error มาปรับเวทเวกเตอรเพือ่จะไปปรับ nose referenc

3.5 อุปกรณการทดลอง
 อุปกรณทีใ่ชในการทดลองแสดงไดดงัรูปและมีรายละเอียดตามรายการดังตอไปนี ้

ภาพที่ 3-4 บอรด TMS320C3X

ภาพที่ 3–5 แหลงจายไฟ (Power Supply)กับเครื่องกําเนิดสัญญาณ 1 เครื่อง

ภาพที่ 3–6 ออสซิลโลสโคป (Oscilloscope)

ภาพที่ 3-7 การตออุปกรณทดลอง

สรุป อุปกรณท่ีใชในการทําการทดลอง
1. คอมพิวเตอรตั้งโตะ 2 เครื่อง
2. เครื่องกําเนดิสัญญาณ 1 เครื่อง
3. ออสซิลโลสโคป (Oscilloscope)
4. บอรด TMS320C3X
5. แหลงจายไฟ (Power Supply)
6. สายสัญญาณ 6 เสน
7. วงจร Summing 1 ชุด
8. เครื่องวัดคลื่นไฟฟาหวัใจจําลอง

บทที่ 4
ผลการทดลอง

ในการทดลองไดทําการออกแบบและสรางโปรแกรมการลดทอนสัญญาณรบกวนแบบ

ปรับตัวเอง โดยมีคาความถีท่ี่แตกตางกันออกไป และความแตกตางของคาขนาดชั้น μ (Step
Size) จะมีผลตอเสถียรภาพและความเรว็ในการลูเขา ซ่ึงมีผลตอความสามารถในการ
ติดตามสัญญาณของตัวกรองดวยการทดลองไดแบงออกเปน 2 สวน

1. การออกแบบและสรางตัวกรองสัญญาณเชิงตวัเลขแบบปรับตัวเองโดยโปรแกรม
Matlab

2. การออกแบบและสรางตัวกรองสัญญาณเชิงตวัเลขแบบปรับตัวเองโดยอาศัยโปรแกรม
ภาษาซีประมวลผลผานบอรด TMS320C3X

การออกแบบที่ 1 ใชการแสดงผลผานโปรแกรม Matlab กําหนดสัญญาณที่ตองการ(Signal)

50 Hz และใหสัญญาณที่รบกวนมีความถีสู่ง(Noise), μ = 0

ภาพที่ 4-1 การแสดงผลผานโปรแกรม Matlab

เมื่อเราดูผลการทดลองที่ 1 สัญญาณที่ตองการมีความถี่ 50 Hz (กราฟ 1) ถูกสัญญาณรบกวนทีม่ี
ความถี่สูง (กราฟ 2) เขามารบกวนปะปนกลายเปนสัญญาณที่ตองการรวมกับสัญญาณรบกวน
(กราฟ 3) แตเมื่อถูกการกรองดวยวิธีการของตัวกรองสัญญาณเชิงตัวเลขแบบปรับตัวเองสัญญาณที่
ตองการจะคอยๆเพิ่มความคมชัดจนเขาใกลรูปสัญญาณที่เราตองการ
 ในการทดลองตอไปเราจะใหสัญญาณรบกวนเปนความถีใ่นยานความถี่ต่าํ
(Low Frequency : Hz) และสัญญาณที่เราตองการเปนสัญญาณคลื่นไฟฟาหวัใจ (ECG)ดังตวัอยาง
สัญญาณรบกวนที่ใชความถี ่50 Hz

ภาพที่ 4-2 สัญญาณรบกวน 50Hz

สัญญาณที่ตองการคลื่นไฟฟาหัวใจ

ภาพที่ 4-3 สัญญาณคลื่นไฟฟาหัวใจ (ECG)

 การดูกราฟจากผลการทดลองตอไปคือแบบที่ 2 และแบบที่ 3 โดยลักษณะของกราฟบน
(หมายเลข 1)จะเปนกราฟคลื่นไฟฟาหวัใจ, กราฟสวนกลาง(หมายเลข 2)จะเปนกราฟที่เกิดจากการ
รบกวนโดยในที่นี้เราใชสัญญาณรบกวนความถี่ต่ําไปกระทําตอสัญญาณคลื่นไฟฟาหวัใจ, กราฟลาง
(หมายเลข 3)เปนกราฟที่เกดิจากการลดทอนดวยตวักรองเชิงเลขแบบปรับตัวเองผานบอรด
TMS320C3X

การออกแบบที่ 2 ใชการแสดงผลผานโปรแกรม Matlab กําหนดสัญญาณรบกวน 45 Hz

ให μมีคาตาง ๆ

 μ = 0.001 เวลาในการลูเขา (Time) = 1.79 s

ภาพที่ 4-4 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz μ = 0.001

 μ= 0.002 เวลาในการลูเขา (Time) = 1.32 s

ภาพที่ 4-5 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz μ = 0.002

μ= 0.003 เวลาในการลูเขา (Time) = 1.02 s

ภาพที่ 4-6 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz μ = 0.003

μ= 0.004 เวลาในการลูเขา (Time) = 856

ภาพที่ 4-7 การแสดงผลผานบอรด TMS320C3X ความถี ่45 Hz μ = 0.004

μ = 0.005 เวลาในการลูเขา (Time) = 720 ms

ภาพที่ 4-8 การแสดงผลผานบอรด TMS320C3X ความถี่ 45 Hz μ = 0.005

 เมื่อดูจากผลการทดลองคาของ μ (Step Size) มีคาเพิม่ขึ้นจะทําใหอัตราการลูเขา

มีคาลดลงเปนไปตามทฤษฎี
min
1

μλ
=t

ตารางที่ 4-1 การแสดงผลการเปรียบเทียบการออกแบบที่ 2 ความถี่ (f) 45 Hz แตคาขนาดขั้น (μ)
มีคาตาง ๆ กัน ดูเวลาการลูเขา

ความถี่ ,f (Hz) ขนาดขั้น (μ) เวลาการลูเขา

45 0.001 1.79 s
 0.002 1.32 s
 0.003 1.02 s
 0.004 856 ms
 0.005 720 ms

การออกแบบที่ 3 ใชการแสดงผลผานโปรแกรม Matlab บอรด TMS320C3X ใหความถี(่F)มีคา

ตาง ๆ กัน โดยไมมีการเปลีย่นแปลงคาขนาดขั้น (μ) ใหคา μ = 0.001 ทุก ๆ คาความถี่ของแต
ละการทดลองเพื่อดูผลการลดทอนและเวลาในการลูเขา

ภาพที่ 4-9 การแสดงผานบอรด TMS320C3X ความถี่ 50 Hz, μ = 0.001 เวลาในการลูเขา 2.78s

ภาพที่ 4-10 การแสดงผานบอรด TMS320C3X ความถี่ 55 Hz, μ = 0.001 เวลาในการลูเขา 2.50s

ภาพที่ 4-11 การแสดงผานบอรด TMS320C3X ความถี่ 60 Hz, μ = 0.001 เวลาในการลูเขา 2.54s

ภาพที่ 4-12 การแสดงผานบอรด TMS320C3X ความถี่ 70 Hz, μ = 0.001 เวลาในการลูเขา 2.56s

ตารางที่ 4-2 การแสดงผลการเปรียบเทียบการออกแบบที่ 3 คาความถี่ (f) ที่มีคาตาง ๆ กัน แตคา

ขนาดขั้น (μ) มีคาเดียวกัน

ความถี่,f (Hz) ขนาดขั้น (μ) เวลาการลูเขา

50 0.001 2.78 s

55 0.001 2.50 s

60 0.001 2.54 s

70 0.001 2.56s

สรุป เมื่อเราดตูารางผลการทดลองจากการทดลองแบบที่ 2 และแบบที่ 3 เราจะเห็นไดวาตวักรอง
สัญญาณเชิงตัวเลขแบบปรับตัวเองจะคอยๆทําการลดทอนสัญญาณรบกวนจนเขาใกลหรือเหมือน
สัญญาณที่เราตองการโดยการลดทอนสัญญาณเร็วหรือชา(เวลาในการลูเขา)ขึ้นอยูกบัคา

สัมประสิทธิ์, μ โดยถาคา μ มีคามากเวลาในการลูเขาจะมีคานอยนัน่คือในการลดทอนจะทําไดเร็ว

และถาคา μ มีคานอยเวลาในการลูเขาจะมีคามากนั่นคอืในการลดทอนจะทําไดชา

บทที่ 5
สรุปผลการทดลอง

5.1 สรุปผลการทดลอง

จากผลการทดลองการลดทอนคลื่นไฟฟาหวัใจจําลองดวยตัวกรองสัญญาณเชิงตัวเลขแบบ
ปรับตัวเอง พบวาอัลกอรธึิมของสมการลีสทมีนแสควรโครงสรางแบบตรงมีอัตราการลูเขาชาที่สุด
เมื่อเปรียบเทียบกับอัลกอริธึมของรีเคอชีฟลีสทแสควร (RLS) และฟาสทรีเคอชัฟลีสทแสควร
(FRLS) แตเสถียรภาพของอัลกอริธึมลีสทมีนแสควรจะดีที่สุดซึ่งอัตราการลูเขาจะขึ้นอยูกับคาของ

ขนาดขั้น (Step Size) μ ดงัที่กลาวมาแลว นอกจากนีย้งัสามารถนาํรูปแบบของสมการ Adaptive
Filter ไปประยุกตใชกับการลดทอนสัญญาณในรูปแบบตางๆ ได

5.2 ขอเสนอแนะ

ขอจํากัดในการทดลองการลดทอนคลื่นไฟฟาหัวใจทดลองดวยตัวกรองสัญญาณเชิงตัวเลข
แบบปรับตัวเองของบอรด TMS320C3X มีหนวยความจํา RAM และจํานวนรีจิสเตอรนอย จึงทาํ
ใหผลการทดลองมีความยุงยากและอุปกรณที่ใชมีความเสถียรนอยทําใหผลการทดลองออกมา คาด
เคลื่อน ดังนั้นถาอุปกรณดังกลาวมีความสามารถประสิทธิภาพผลการทดลองจะออกมาได
เดนชัดยิ่งขึ้น

เอกสารอางอิง

1. Parks T.W. and Burrus C.S.. Digital Filter Design. USA : JOHN WILLY
 & SOPNG, 1987.
2. Proakis G. John, and Manolakis G. Dimitris. Digital Signal Processing.

USA : McGraw-hill, 1986.
3. Haykin Simon. Adaptive Filter Theory. USA : Prentice – hall, 1986.
4. TMS320C3X User’s Guide. USA : Texas Instrument Corporate, 1994.
5. Sawitree K. and Sukanya P. Implementation of Multi – Narrow Band Digital

Filter. THAI, 2002.
6. Rulph C. DSP Applications Using C and the TMS320C6X DSP. USA :

JOHN WILLY & SOPNG, 2002.

ภาคผนวก ก

การใชงานบอรด TMS320C31 DSP STARTER KIT

การใชงานบอรด TMS320C31 DSP STARTER KIT

ก-1 ขั้นตอนการใชงานบอรด TMS320C31 DSP STARTER KIT มีดังนี ้
 1. ตอบอรด TMS320C31 DSK เขากับPort Printerของเครื่องไมโครคอมพิวเตอร

2. จายไฟ 10-12 Vdc เขากับบอรด TMS320C31 DSK

3. สราง Sub-Directory ดวยคําสั่ง md c:\c3xtools

4. Copy โปรแกรมของ TMS320C31 DSK ดวยคําสั่ง copy d:*.* c:\c3xtools

5. Rum ค่ําสั่ง c:\c3xtools\dsk3d ถาไมมีขอผิดพลาดบนจอภาพของเครื่อง
ไมโครคอมพิวเตอรจะแสดงดังภาพที่ 1

ภาพที ่ก-1 แสดงการ RUN โปรแกรม DSK3D เปนไปอยางถูกตอง

หนาตางแสดง Debugger ที่พรอมทํางาน

ภาพที ่ก-2 แสดงหนาตาง Debugger ที่พรอมทํางาน

ภาพที่ ก-3 หนาตางแสดงการโหลด DSK3d

ก-2 การเรียกใชหนาตาง Debugger

 คําสั่งที่เรียกใชหนาตาง Debugger
Dsk3d [option]
Dsk3d เปนคําสั่งที่เรียกใช หนาตาง Debugger

Option เปนการเพิ่มรายละเอียดของ Debugger

 ตารางที่ 1 แสดงรายการ Option ของ Debugger โดยในตารางจะอธิบาย Option

บาง Option ที่เรียกใชบอย

ตารางที่ ก-1 แสดง Optiont ของ Debugger

Option อธิบายสรุป
? หรือ HELP การแสดงรายการของ opion

AUTO คนหาอัตโนมตัิถา พอรตขนานสนับสนนุโมด 8 บิต หรือ 4 บิต
BW=4,Nibbie การสื่อสารใชพอรตขนานแบบมาตรฐาน 4 บิต mode
unindirectional
BW=5, Byte การสื่อสารใชพอรตขนานแบบมาตรฐาน 8 บิต mode
unindirectional
LPTx, LPT=x เลือกพอรตพรินเตอรขนาน (LPT1 เปน defauft)
PORT=Ox378 เลือก address ของ พอรตตางๆ
RESET รีเซต DSK (cold boot)

TEST คนหาอัตโนมตัิทั้ง LPT1 , LPT2 และLPT3 เพื่อติดตอกับ DSK

T=xx เพิ่มบัส xx I/O ไซเคิลพิเศษในการสงแตละครั้งสําหรับสายที่
ยาวหรือมี nois

WIN=1 การจัดการหนาตาง Time Slice ใหทํางาน
WIN=0 การจัดการหนาตาง Time Slice ใหหยดุการทํางาน และ เคลียร

อินเตอรรัฟท

การแสดงรายการของ option (? หรือ HETP option)

 สามารถที่จะด ู option ที่แสดงในตารางที่ 1 โดยใช ? หรือ HETP ตัวอยาง

 DSK3D ?

การเลือกพอรตพรินเตอรขนาน (LET = 3 หรือ LET#option)
 LPT Option จะเลือกพอรตพรินเตอรขนานจากการติดตอของ DSK กับ host

 พอรตพรินเตอรขนาน หนาที ่

LPT1 หรือ LPT = 1 คัดเลือกพอรตพรินเตอรที่ I/O address 0x378

LPT2 หรือ LPT = 2 คัดเลือกพอรตพรินเตอรที่ I/O address 0x278

LPT3 หรือ LPT = 3 คัดเลือกพอรตพรินเตอรที่ I/O address 0x3BC

หมายเหตุ สําหรับเครื่อง ESSA และ IBM PS/2s ใช LPTx ที่แตกตางกัน

AT Convertion
LPT1
LPT2
LPT3

EISA และ PS/2
LPT2
LPT3
LPT1

I/O Address
Ox378
Ox278
Ox3BC

การเลือกพอรตพรินเตอรที่จะใช (พอรต option)
 พอรต option เลือกพอรตพรินเตอรขนานใน Address ที่มีใหดังตัวอยาง

Port = Ox378

หมายความวา เลือกพอรตพรินเตอรขนานของ host ใน Address Ox378

การคนหาพอรตพรินเตอรอัตโนมัติ (TEST option)
 ใช test option ไปคนหาในระบบเพื่อหาพอรตขนานทีจ่ะติดตอกับ DSK

 หมายเหตุ ถามีพอรตพรินเตอรหรือการติดตออ่ืนๆ ไปยัง PC คุณจะตองหยุดการทํางาน
กอนใช test option

ก-3 การใชหนาตาง Debugger

ก-3.1 หนาตาง DISASSEMBLY แสดงการจองพื้นทีห่นวยความจําของ assembly ใน
หนาตางนีจ้ะแสดงบรรทัดที่มากมายของ code ซ่ึงแตละบรรทัดจะแสดงใหเห็นถึงโครงสราง
ของตําแหนง, โครงสราง opcode, ช่ือ และโครงสรางของ mnemonic บรรทัดที่แสดง
แถบสวางและเปนโครงสรางตอไปที่ถูกดําเนินการ

 ในการเลือกหนาตาง DISASSEMBLY โดยกด ALT+D ขณะที่ในหนาตาง
DISASSEMBLY คุณสามารถใชเคอรเซอรเลือกบรรทัดและใช function key เพื่อตั้งหรือ
เคลียร break point

ก-3.2 หนาตาง CPU รีจิสเตอรแสดงใหเห็นรีจิสเตอรทีม่ีอยูใน CPU ดังที่เห็นในภาพที่ 7
ตามปกติแลวคาที่บรรจุในรีจิสเตอรจะเปนเลขฐาน 16 สามารถ F3 คารีจิสเตอรจะเปนท
แบบ Floating-point-decimail ถากด F2 คาภายในรีจิสเตอรจะเปนแบบ 40 บิต (
hexadeadimal)

 การเปลี่ยนแปลงคารีจิสเตอรทําโดยกด ALT+C สามารถเขียนคาที่แถบขอมูลที่เปนแถบ
สีและกด ENTER เพื่อยอมรับการเปลี่ยนแปลง เมื่อแนใจและใช key ดังนี้เพื่อคลิก data ที่
ตองการแกไข

ก-3.3 หนาตาง MEMORY แสดงใหเหน็ชวงของ memory ดังในภาพที่ 8 ในหนาตางจะ
มี 2 สวน คอื

- Address ในคอลัมแรกจะเปนเลขของตําแหนงแรกในหนาตางของคอลัมขอมูล
ตําแหนงที่คอลัมขอมูลในหนาจอจะมีตําแหนงเดยีวกับตาํแหนงของคอลัม แตละ
ตําแหนงในคอลัมจะแสดงถึงลักษณะของขอมูลที่ถูกตอง

- Data คาที่มีอยูในคอลัมจะแสดงคาใหเห็นในตําแหนงนัน้

ตัวอยางหนาตาง memory มีขอมูล 4 คอลัม ดังนั้นในแตละตําแหนงเริ่มตนคาจะเพิ่มขึ้นทีละ 4

ถึงแมหนาตางจะแสดงขอมลูเพียง 4 คอลัมแตมันยังคงเปนเพยีงตําแหนงของคอลัมเดียว เชนที่
ตําแหนง 0x00809800 มีคาเทากับ , ที่ตําแหนง 0x00809801 มีคาเทากับ 0xFFFFFFFC ที่
ตําแหนง 0x00809804 (คาแรกในแถวที ่ 2) มีคาเทากับ 0x0080982C , ที่ตําแหนง
0x00809805มีคาเทากับ 0x00809839 เปนตน

 การเปลี่ยแปลงคาของหนาตาง memory สามารถทําไดโดยกด ALT+M จึงจะสามารถ
เขียนขอมูลทับได การเลือก cell สามารถใช key

 ก-3.4 หนาตาง COMMAND จะมีพืน้ที่สําหรับสงผานคําสั่ง ตอบรับคําสั่งที่ผิดพลาด
และขอความ Error หนาตาง COMMAND มี 2 สวนคือ

- Command line สวนนีม้ีไวปอนคําสัง่ เมื่อตองการสงผานคําสั่ง
- สวนแสดงผล เปนสวนตอบรับคําสั่งที่ปอนเขามาหรอืแสดง output อ่ืนๆ จากคําสั่ง

และแสดงขอความ Error

ตารางที่ ก-2 การแกไขคําสัง่

ส่ิงที่ได ใช Command ตอไปนี ้
เล่ือนไปตลอดคําสั่ง

แทรก และเขียนทับ INS

ลบตัวอักษรทีต่ําแหนงเคอรเซอร DEL

เล่ือนไปยังบรรทัดเริ่มตน HOME

เล่ือนไปยังบรรทัดสุดทาย END

เคลียรคําสั่ง ESC

เลือกคําสั่งจาก Buffer

ก-4 การใชเมนูชวยเหลือ

 สามารถกด F1 หรือปุม H เพื่อใหหนาตางชวยเหลือเปดขึ้นมาแสดงใหเห็นดังภาพที่ 10

เลือกจากรายการเมนูขางลางในการหารายละเอียดเพิ่มเตมิ

การเลื่อนไปยงัหนาตาง Help สามารถใช
- PGUT เล่ือนไปยังรายการดานบน

- PGDN เล่ือนกลับไปยังรายการเดิม

 - END ไปยังรายการสุดทายของ Help Menu

 - S เซฟ Help Text เปนไฟล
 - ESC ออกจาก Help Menu และกลับไปยัง Debugger

 - H เพื่อผานไปยัง Help อันดับที่ 2 สวนใหญจะเกี่ยวกับฮารดแวรและการใชคําสั่งเฉพาะ
ของ Debugger

ค่ําสั่ง Debugger

 ในตารางจะเปนการสรุปปุม Function และคําสั่งของ Debugger

ตารางที่ ก-3 คําสั่งแกไขในบรรทัด

ส่ิงที่ได ใชคําสั่งตอไป

เล่ือนเคอรเซอรไปยังจุดเริ่มตนของ Command HOME

line
เล่ือนเคอรเซอรไปยังจุดสุดทายของ
Command line

END

ส่ิงที่ได ใชคําสั่งตอไปนี้
ลบตัวอักษรดานซายของเคอรเซอร DEL

ลบตัวอักษรดานขวาของเคอรเซอร SHIFT+END

เล่ือนเคอรเซอรไปดานซาย

เล่ือนเคอรเซอรไปดานขวา

ตารางที่ ก-4 Command-Line Buffer Manipulation

ส่ิงที่ได ใชคําสั่งตอไปนี้
เรียกคําสั่งสุดทาย PAGE UP หรือ
เรียกคําสั่งแรกใน Command Line Buffer อีก
ดวย

PAGE DOWN หรือ

ปฏิบัติในคําสั่งสุดทายอีกครัง้ TAM

ตารางที่ ก-5 การสั่งงานโปรแกรม

ส่ิงที่ได ใชคําสั่งตอไปนี้
ปฏิบัติทีละโครงสรางใน Single-step SS

ปฏิบัติทีละ n โครงสราง XN n

ปฏิบัติจนถึงโครงสรางที่ถูกกําหนดใน addr ใน
Single-step

XG addr

ปฏิบัติโปรแกรมจนถึง breakpoint RUN

ปฏิบัติโปรแกรมและละเลย breakpoint run-free RUNG

ตารางที่ ก-6 การแสดงผลและการเปลี่ยนแปลงขอมูล

 ส่ิงที่ได ใชคําสั่งตอไปนี้
การแสดงคาทีอ่ยูสในหนวยความจําที่ addr ใน
หนาตาง memory

MEM addr

การเปลี่ยนแปลงคาในหนวยความจําที่ addr MM addr

ใสคา lang ไปในหนวยความจําโดยเริ่มตนที่
addr ดวย val เปนคา floating-poin เฉพาะ
จะถูกเปลี่ยนแปลงไปเปน คา floating-poin

ของ TMS320

MM addr leng val

แสดงภาษา Assembly ที่ addr ในหนาตาง
DISASSEMBLY

DASM addr

แสดงรีจิสเตอร extended-precision แบบ
40 บิต ในหนาตาง Register

REG40

แสดงรีจิสเตอร extended-precision แบบ
floating-poin ในหนาตาง Register

FLOAT

การเปลี่ยนแปลง reg ในหนาตาง CPU

REGISTER กับคาจาก expression ดัง
ตัวอยาง
PC=0X809800
RO=1.34

reg = expression

ตารางที่ ก-7 การจัดการ Breakpoint

ส่ิงที่ได ใหคําสั่งตอไปนี้
เซต Breakpoint ที่ addr SB addr

เคลียร Breakpoint ที่ addr CB addr

เคลียรทุก Breakpoint CB

แสดงรายการ Breakpoint ทั้งหมดที่ถูกเซต DB

ตารางที่ ก-8 การโหลดโปรแกรม

ส่ิงที่ได ใชคําสั่งตอไปนี้
โหลดไฟล LOAD filename

โหลดสัญลักษณ SLOAD filename

โหลดไบนาร ี BLOAD filename

เคลียรสัญลักษณ SCLEAR

ตารางที่ ก-9 Performing System Tasks

ส่ิงที่ได ใชคําตอไปนี ้
รีเซท DSK RESET

ออกจาก Debugger QUIT , EXIT

ออกไป DOS และปฏิบัติตามคําสั่ง, และพิมพ
EXIT เพื่อกลับมาที่ Denugger

DOS (Expression to run)

ออกไปยัง DOS และทําการแกไขไฟล (ถาไม
มีไฟลใหแกไขจะโหลดไฟลปจจุบันมาใช)

EDIT filename

ออกไปยัง DOS และแปลง DSK แอสเซ
มเบอไปเปนไฟลแอสเซมเบอ

Dsk3a filename.asm

Quick Referance Guide

ตารางที่ ก-10 แสดงปุม Shortcuts ฟงกชันสําหรับหนาตาง DISASSEMBLY

ปุมฟงกช่ัน คําอธิบาย
F1 หนาจอ Hetp
F2 เซต Breakpoint ที่เคอรเซอร
F3 เคลียร Breakpoint ที่เคอรเซอร
F4 Run ที่เคอรเซอร
F5 Run
F6 หนาจอ Breakpoint
F7 เคลียร Breakpoint ทั้งหมด
F8 Run โปรแกรมทีละขั้น

F9 Grow wimdows
F10 Step over
SHIFT+F9 เลือกหนาตาง DISASSEMBLY

ESC หรือ ENTER Ecsape

ตารางที่ ก-11 แสดงปุม Shortcuts ฟงกช่ันสําหรับหนาตาง CPU

ปุมฟงกช่ัน คําอธิบาย
F1 หนาจอ Help
ESC ออกจากหนาตาง CPU
HOME เล่ือนขึ้นดานบน
END เล่ือนลงดานลาง
 เล่ือน cell ในแนวตั้ง
TAM เล่ือน cell ในแนวนอน

ตารางที่ ก-12 แสดงปุม Shortcuts ฟงกช่ันสําหรับหนาตาง MEMORY

ปุมฟงกช่ัน คําอธิบาย
F1 หนาจอ Help
F9 Toggle windows size
ESC ออกจากหนาตาง MEMORY
HOME เล่ือนขึ้นดานบน
END เล่ือนลงดานลาง
PAGE UP , PAGE DOWN เล่ือนหนาขึ้นหรือลง
 , เล่ือน cell ในแนวตั้ง
TAP เล่ือน cell ในแนวนอน

ตารางที่ ก-13 แสดงปุม Shortcuts ฟงกช่ันสําหรับหนาตาง COMMAND

ปุมฟงกช่ัน คําอธิบาย
F1 แสดงรายการคําสั่ง
F2 รีจิสเตอร extended-precistion ฐาน 16

แบบ 40 บิต
F3 รีจิสเตอร extended-precistion ฐาน 10

แบบ floating-point
F4 Toggle ระหวางการแสดงไฟล source และ

หนวยความจํา DISASSEMBLY
F5 Run โปรแกรมจนถึง Breakpoint ตอไป
F6 แสดง Breakpoint ทั้งหมด
F7 เคลียร Breakpoint ทั้งหมด
F8 Run โปรแกรมทีละขั้น
F9 Toggle the DISASSEMBLY windows

size
F10 Run โปรแกรมทีละขั้นและกลับไปขั้นตอนที่

ผานมาดวย
ALT+D เลือกหนาตาง DISASSEMBLY
ALT+M เลือกหนาตาง MEMORY
ALT+C เลือกหนาตาง COMMAND
ESC ออกจากหนาตางที่ทํางาน

ภาคผนวก ข

โปรแกรมภาษาซ ี

โปรแกรมภาษาซี

 ในการทดลองเมื่อเราไดทดสอบรูปแบบของสมการจาก Matlab แลวจะใชภาษาซี ใน
การทดลองโดยตองแสดวงผลออกทางบอรด TMS3201C3X ดังนั้น เนื้อหาของตัวโปรแกรม
ภาษาซี จะอธิบายในสวนของคําสั่งและวิธีการทํางานในการแสดงผลการทดลองนี้

ข-1 สวนประกอบของโปรแกรมภาษาซี
 ภายในโปรแกรมภาษา C แบงออกเปน 2 สวน ประกอบดวยกันคือ สวนหัวของ

โปรแกรม (Head) และสวนของตัวโปรแกรม (Body) โดยรายละเอียดของแตละสวนประกอบ

 ข-1.1 สวนหัวของโปรแกรมจะเริ่มตั้งแตบรรทัดแรกของโปรแกรมจนมาสิ้นสุดที่บรรทัด
กอน main () สวนหัวของโปรแกรมมีไวเพื่อเขียนคําสั่งพิเศษบางอยางที่ตองการใหทํางานกอนที่
จะเขาสูการทํางานของตัวโปรแกรม นอกจากนี้ยังเปนสวนที่ใชในการสรางและกําหนดขอมูลที่จะ
นําไปใชในตัวโปรแกรมอีกดวย ดังนั้นภายในสวนหัวของโปรแกรมจะประกอบดวยพรี
โปรเซสเซอรไดเร็คทีฟ (Preprocessor directive) และสวนของการกําหนดขอมูล

 ข-1.2 พรีโปรเซสเซอรไดเร็คทีฟ (Preprocessor directive)พรีโปรเซสเซอรไดเร็คทีฟ คือ
คําสั่งรูปแบบหนึ่งของภาษา C ที่มีความพิเศษ โดยในขั้นตอนการแปลความหมายโปรแกรม ถา
ตัวแปลภาษา C ตรวจพบวามีการใชพรีโปรเซสเซอรภายในโปรแกรม พรีโปรเซสเซอรไดเร็คทีฟ
เหลานั้นจะถูกแปลความหมายเปนลําดับแรกกอนคําสั่งประเภทอื่น ๆ

 รูปแบบของการเขียนพรีโปรเซสเซอรไดเร็คทีฟ จะตองขึ้นตนดวยเครื่องหมาย # แตไม
ตองลงทายดวยเครื่องหมาย : เหมือนคําสั่งอื่นทั่วไป โดยคําสั่งที่จัดอยูในกลุมของพรี
โปรเซสเซอรไดเร็คทีฟ แสดงไดดังนี ้

#include #define #error #if #endif
#elif #else #ifdef #ifndef #lundef
#line #pragma

พรีโปรเซสเซอรไดเร็คทีฟบางคําสั่ง ไมจําเปนตองเขียนไวที่สวนหัวของโปรแกรม อยางเชน
#elf, #undef ซ่ึงขึ้นอยูกับการทํางานของพรีโปรเซสเซอรไดเร็คทีฟนั้น และความตองการของ
ผูเขียนโปรแกรมวาจะเรียกใชพรีโปรเซสเซอรไดเร็คทีฟในขั้นตอนใด

#include

 พรีโปรเซสเซอรไดเร็คทีฟ #include จะใชสําหรับสั่งใหตัวแปลภาษา C นําไฟลที่กําหนด
ช่ือไวตอจาก #include เขามารวมกับโปรแกรมกอนที่จะทําการแปลโปรแกรม เนื่องจากในบาง
กรณีที่มีการเรียกใชคําสั่งจากไฟลอ่ืน ดังนั้นเราจึงตองเขียน #include ไวที่สวนหัวของโปรแกรม
เสมอ

 การเขียน พรีโปรเซสเซอรไดเร็คทีฟ #include สามารถทําได 2 รูปแบบ ดังนี้

 แบบที่ 1 #include <ชื่อไฟล>

การใชเครื่องหมาย < > ระบุช่ือไฟล เพื่อใหตัวแปลภาษา C เร่ิมคนหาไฟลจากไดเร็คทอ
รีที่กําหนดไวกอน (สําหรับ Turbo C++ จะเปนไดเร็คทอรี include) ถาไมพบจะกลับมาคนหาตอ
ที่ไดเร็คทอรีปจจุบัน (ซ่ึงก็คือไดเร็คทอรีเดียวกับที่บันทึกไฟลโปรแกรมไว)

แบบที่ 2 #include “ชื่อไฟล”

การใชเครื่องหมาย “ ” ระบุช่ือไฟล ตัวแปลภาษา C จะเริ่มคนหาไฟลจากไดเร็คทอรี

ปจจุบันกอน ถาไมพบจะไปคนหาตอในไดเร็คทอรีที่กําหนดไว
#define

 กอนที่จะพูดถึงหนาที่ของพรีโปรเซสเซอรไดเร็คทีฟ #define เราจําเปนจะตองรูจักกับคํา
วา มาโคร (Macro) ในภาษา C เสียกอน

 ข-1.3 มาโคร (Macro)มาโครเปนชื่อที่เราสรางขึ้นมาภายในโปรแกรม พรอมกับทําการ
กําหนดคาหรือความหมายใหกับมาโครนั้น โดยมีขอกําหนดวาชื่อของมาโครตองเปนตัวอักษรตัว
ใหญ และคาที่กําหนดใหกับมาโครสามารถเปนไดตั้งแตตัวเลข ขอความ หรือคําสั่งที่ไดผลลัพธ
ออกมาแนนอน (เชน การคํานวณ) ยกตัวอยางเชน สรางมาโครชื่อ NUMBER กําหนดคาใหเปน
15 หรือมาโครชื่อ NAME กําหนดคาใหเปนขอความ “Boonserm”

#include <stdio.h>
#include <math.h>

ใหตัวแปลภาษา C นําไฟล stdio.h เขามารวมกับโปรแกรมกอนท่ีจะแปล
ใหตัวแปลภาษา C นําไฟล math.h เขามารวมกับโปรแกรมกอนท่ีจะแปล

#include “stdio.h”
#include “math.h”

เมื่อมีการเรียกใชมาโครที่สรางขึ้นที่ตําแหนงใดก็ตามภายในโปรแกรม ตัวแปลภาษา C

จะนําคาของมาโครไปแทนที่ตําแหนงนั้น ประโยชนของการใชงานมาโครที่เห็นไดชัดเจนก็คือ
ในกรณีที่เรามีขอมูลซ่ึงตองเรียกใชบอยคร้ังในโปรแกรม การสรางมาโครสําหรับขอมูลนั้นขึ้นมา
ใชงานจะเหมาะสมและสะดวกกวาการที่ตองเขียนขอมูลนั้นหลาย ๆ คร้ัง ซ่ึงอาจจะเกิดความ
ผิดพลาดขึ้นได

#define ใชสําหรับสรางมาโครและกําหนดคาใหกับมาโครนั้น รูปแบบการเขียนพรี
โปรเซสเซอรไดเร็คทีฟ #define

โดยสวนใหญพรีโปรเซสเซอรไดเร็คทีฟ #define จะเขียนไวที่สวนหัวของโปรแกรม
เพื่อใหมาโครเหลานั้นสามารถนําไปใชไดตลอดทั้งโปรแกรม

ข-2 ตัวแปรและหนาท่ีของตัวแปร

 เมื่อเราเตรียมขอมูลไวพรอมแลว การจะนําขอมูลเขามาใชในโปรแกรม เราตองทําให
ตัวแปลภาษา C รูจักขอมูลเหลานั้นเสียกอนจึงจะใชงานได ซ่ึงวิธีการก็คือ การสรางตัวแปร
สําหรับขอมูลเหลานั้นขึ้นมา
 ตัวแปร (Variable) ก็คือ การจองที่เก็บขอมูลในหนวยความจําหลัก (RAM) ของเครื่อง
คอมพิวเตอร พรอมกับกําหนดชื่อเรียกแทนหนวยความจําในตําแหนงนั้น เปรียบเทียบไดกับการ
จองหองที่มีเลขที่ประจําหองใหกับขอมูล เวลาจะใชงานขอมูลใดก็ใหเรียกผานชื่อของตัวแปร
อยางเชน ถาเราสรางตัวแปรขึ้นมา 1 ตัวโดยใชช่ือวา num สําหรับเก็บคาตัวเลข 16 เมื่อ
ตองการนําจํานวน 16 มาใชงานเราก็เพียงแตเรียกชื่อ num ซ่ึงตัวแปลภาษา C จะแปล
ความหมายไดถูกตองวา num คือการนําคาตัวเลข 16 ที่เก็บไวในหนวยความจํามาใชงาน

ข-3 ชนิดของตัวแปรในภาษา C

 ตัวแปรในภาษา C สามารถแบงไดเปน 2 ประเภทใหญ ๆ คือ ตัวแปรพื้นฐาน (Scalar)

ซ่ึงหมายถึงตัวแปรที่เก็บขอมูลไดเพียงคาเดียว และตัวแปรชุด (Array) ซ่ึงก็คือตัวแปรที่สามารถ
เก็บขอมูลไวไดหลายคาภายในตัวแปรตัวเดียว ในบทนี้จะพูดถึงเฉพาะตัวแปรพื้นฐาน

ตัวแปรพื้นฐานในภาษา C ตามมาตรฐาน ANSI

ชนิดของตัวแปร ขนาด (bits) ขอบเขต ความหมาย

char 8 -128 ถึง 127

(อักขระ ASCII)

เ ก็ บข อมู ลชนิ ดอั กขระ
โดยใชพื้นที่หนวยความจํา
ในการจัดเก็บ 8 bits (1
byte)

unsigned char 8 0 ถึง 255 เ ก็ บข อมู ลชนิ ดอั กขระ
แบบไมคิดเครื่องหมาย

int 16 -32,768 ถึง 32,767 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
จํ านวนเต็ม ใชพื้นที่ ใน
หนวยความจํา 16 bits (2
bytes)

unsigned int 16 0 ถึง 65,535 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
จํานวนเต็ม แบบไมคิด
เครื่องหมาย

short 8 -128 ถึง 127 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
จํานวนเต็มแบบสั้น ใช
พื้นที่หนวยความจํา 8 bits
(1 byte)

unsigned short 8 0 ถึง 255 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
จํานวนเต็มแบบสั้น โดย
ไมคิดเครื่องหมาย

long 32 -2,147,483,648

ถึง 2,147,483,649
เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
จํานวนเต็มแบบยาว ใช
พื้นที่หนวยความจําในการ
จัดเก็บ 32 bits (4 bytes)

unsigned long 32 0 ถึง 4,294,967,296 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
จํานวนเต็มแบบยาว และ
ไมคิดเครื่องหมาย

float 32 3.4*10-38 ถึง 3.4*1038 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
ท ศ นิ ย ม ใ ช พื้ น ที่ ใ น
หนวยความจํา 32 bits (4

bytes) โดยเก็บคาทศนิยม
ประมาณ 6 ตัว

double 64 3.4*10-308 ถึง 3.4*10308 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
ท ศ นิ ย ม ใ ช พื้ น ที่ ใ น
หนวยความจํา 64 bits (8

bytes) เก็บคาทศนิยม
ประมาณ 12 ตัว

long double 128 3.4*10-4032 ถึง 1.1*1040324032 เ ก็ บข อมู ล ชนิ ด ตั ว เ ลข
ท ศ นิ ย ม ใ ช พื้ น ที่ ใ น
หนวยความจํา 128 bits

(16 bytes) เก็บคาทศนิยม
ประมาณ 24 ตัว

 ข-3.1 เครื่องหมายและการดําเนินการในภาษาซีเมื่อเตรียมขอมูลพรอมทั้งสรางตัวแปร
สําหรับเก็บขอมูลขึ้นมาแลว ตอไปเราจะนาํขอมูลเหลานั้นมาดําเนนิการเพื่อเขียนโปรแกรมให
ทํางานออกมาอยางที่ตองการ โดยการดําเนินงานดังกลาวอาจจะหมายถึง การนําขอมูลมาคํานวณ
ทางคณิตศาสตร การคํานวณทางตรรกศาสตร หรือทําการเปรียบเทยีบเพื่อใหไดผลลัพธออกมา
ซ่ึงทั้งหมดเปนสิ่งที่เราจะเรยีนรูกันในบทนี้
 ข-3.2 เครื่องหมายการคํานวณทางคณิตศาสตรการดําเนินการพื้นฐานทีสุ่ดทั้งใน
ชีวิตประจําวันและในการเขียนโปรแกรมกค็ือ การคํานวณทางคณิตศาสตร ซ่ึงถือไดวาเปนการ
ดําเนินการที่กระทําบอยครั้ง โดยเครื่องหมายที่ใชในการคํานวณทางคณิตศาสตรในภาษาซ ี แสดง
ไดดังนี ้

เคร่ืองหมาย การดําเนินการ ตัวอยางการใชงาน ความหมาย

+ บวก z = x + y บวกคาในตัวแปร x เขากับคาในตัวแปร y

ผลลัพธเก็บไวที่ตัวแปร z

– ลบ z = x – y ลบคาในตัวแปร x ดวยคาในตัวแปร y

ผลลัพธเก็บไวที่ตัวแปร z

* คูณ z = x * y คูณคาในตวัแปร x กับคาในตัวแปร y

ผลลัพธเก็บไวที่ตัวแปร z

/ หาร z = x / y หารคาในตวัแปร x ดวยคาในตัวแปร y

ผลลัพธเก็บไวที่ตัวแปร z

% หารเอาเศษ
(Modulo)

z = x % y หารคาในตวัแปร x ดวยคาในตัวแปร y

ผลลัพธคือเศษที่ไดจากการหาร โดยเก็บไว
ที่ตัวแปร z

เครื่องหมายการคํานวณทางคณิตศาสตรประเภทของการเพิ่มหรือลดคาทีละหนึ่ง แสดงไดดังนี ้

เคร่ืองหมาย การดําเนินการ ตัวอยางการใชงาน ความหมาย

y = ++x บวกคาในตัวแปร x เพิ่มขึ้น 1 กอนที่จะ
กําหนดคา x ใหกับตวัแปร y

++ เพิ่มคาทีละหนึ่ง
(Increment)

y = x++ กําหนดคาในตัวแปร x ใหกบัตัวแปร y

กอนที่จะบวกคา x เพิ่มขึ้น 1

y = – –x ลบคาในตัวแปร x ลง 1 กอนที่จะ
กําหนดคา x ใหกับตวัแปร y

– – ลดคาทีละหนึง่
(Decrement)

y = x– – กําหนดคาในตัวแปร x ใหกบัตัวแปร y

กอนที่จะลดคา x ลง 1

นอกจากนี้การคํานวณทางคณิตศาสตรในภาษา C ยังมีเครื่องหมายประเภทที่เรียกวาลดรูป ดัง
แสดงตอไปนี้

เคร่ืองหมาย ตัวอยางการใชงาน ความหมาย

+= y + = x บวกคาในตัวแปร y ดวยคาในตัวแปร x ผลลัพธที่ไดกําหนด
กลับไปให y

–= y – = x ลบคาในตัวแปร y ดวยคาในตัวแปร x ผลลัพธที่ไดกําหนด
กลับไปให y

*= y * = x คูณคาในตัวแปร y ดวยคาในตัวแปร x ผลลัพธที่ไดกําหนด
กลับไปให y

/= y / = x หารคาในตัวแปร y ดวยคาในตัวแปร x ผลลัพธที่ไดกําหนด
กลับไปให y

%= Y% = x หารคาในตัวแปร y ดวยคาในตัวแปร x เศษจากการหารเปน
ผลลัพธกําหนดกลับไปให y

 ข-3.3 เครื่องหมายการเปรียบเทยีบสวนใหญแลวการดําเนนิการเปรียบเทยีบจะทํางาน
รวมกับการดําเนินการอื่น ๆ เชน เปรียบเทยีบผลจากการคํานวณทางคณิตศาสตรหรือตรรกศาสตร
ซ่ึงทําใหในหลายครั้งเราเหน็ภาพของการดําเนินการเปรยีบเทียบไดไมชัดเจน ทั้งทีก่ารเปรียบเทยีบ
เปนการดําเนนิการที่มีความสําคัญไมนอยไปกวาการดําเนินการรูปแบบอื่น สําหรับเครื่องหมายที่
ใชในการเปรียบเทียบแสดงไดดังนี ้

เคร่ืองหมาย การเปรียบเทียบ ตัวอยางการใช
งาน

ความหมาย

== เทากับ x == y ผลลัพธจะเปนจริง ถาคาในตัวแปร x

เทากับคาในตวัแปร y

|= ไมเทากับ x | =y ผลลัพธจะเปนจริง ถาคาในตัวแปร x ไม
เทากับคาในตวัแปร y

< นอยกวา x < y ผลลัพธจะเปนจริง ถาคาในตัวแปร x

นอยกวาคาในตัวแปร y

<= นอยกวาหรือเทากับ x < = y ผลลัพธจะเปนจริง ถาคาในตัวแปร x

นอยกวาหรือเทากับคาในตวัแปร y

> มากกวา x > y ผลลัพธจะเปนจริง ถาคาในตัวแปร x

มากกวาคาในตัวแปร y

>= มากกวาหรือเทากับ x >= y ผลลัพธจะเปนจริง ถาคาในตัวแปร x

มากกวาหรือเทากับคาในตวัแปร y

 ข-3.4 การควบคุมทิศทางการทํางานของโปรแกรมในทางปฏิบัตินั้นสภาพของปญหาที่
เราตองเขียนโปรแกรมขึ้นมาเพื่อแกไขนั้นมีความซับซอน ซ่ึงคงจะไมใชโปรแกรมทีท่ํางานเรียงกนั
ไปตั้งแตตนจนจบโปรแกรม แตควรจะเปนโปรแกรมทีควบคุมทิศทางการทํางานได อยางเชน
ถาขอมูลที่รับเขามาเปนเลขคูใหทํางานอยางหนึ่ง แตถาเปนเลขคี่ใหทํางานอีกอยางหนึ่ง หรือ
กําหนดใหทํางานซ้ําคําสั่งเดิม ซ่ึงจะทําใหโปรแกรมของเราทํางานไดอยางมีประสิทธิภาพมากขึน้
ในภาษาซ ี แบงลักษณะการควบคุมทิศทางของโปรแกรมออกเปน 2 ประเภทหลักคอื การควบคุม

ทิศทางแบบเลอืกทําและแบบวนรอบ ซ่ึงแตละประเภทก็จะมีคําสั่งทีภ่าษาซี กําหนดไวใหเพื่อ
นําไปใชงาน
 คําสั่ง if
 การเลือกทําโดยใชคําสั่ง if จะใชในกรณทีี่มีทางเลือกใหทํางานอยูเพยีงทางเลือกเดยีว
ผลจากการตรวจสอบเงื่อนไขคือ ทํากับไมทําตามคําสั่งนั้น รูปแบบการเรียกใชงานคําสั่ง if แสดง
ไดดังนี ้

condition : เงื่อนไขที่กําหนดขึ้นเพื่อใชพิจารณาวาจะทําหรือไมทําตามคําสั่ง โดยจะตอง
เขียนไวภายในเครื่องหมาย () ซ่ึงเงื่อนไขอาจจะอยูในรปูของนิพจนการคํานวณและเปรียบเทียบ
หรือเปนคาของตัวแปรกไ็ด

if (condition) statement ;

statement : คําสั่งที่จะใหทาํงานถาผลการตรวจสอบเงื่อนไขเปนจริง โดยอาจจะมี
มากกวาหนึ่งคาํสั่งได แตตองใชเครื่องหมายปกกา { } ครอบคําสั่งเหลานั้นเอาไวดวย ดังนี ้
แผนภาพแสดงการทํางานของคําสั่ง if แสดงไดดังรูปตอไปนี ้

คําสั่ง if-else

คําสั่ง if-else จะใชในกรณทีี่มีทางเลือกใหทํางาน 2 ทางเลือก โดยรูปแบบของการ
เรียกใชงานคําสั่ง if-else แสดงไดดังนี ้

การทํางานของคําสั่ง if-else จะเริ่มจากการตรวจสอบเงื่อนไข ถาผลออกมาเปนจริง ตัว
แปลภาษา C จะทํางานตามคําสั่งของ if แตถาผลออกมาเปนเท็จ คําสั่งของ else จะถูกทํางาน

Condition

ทํางานตามคําสั่งของ if

เท็จ

จริง

Condition

ทํางานตามคําสั่งของ if

เท็จ จริง

ทํางานตามคําสั่งของ if

แผนภาพแสดงการทํางานของ คําสั่ง if-else แสดงไดดงันี ้

คําสั่ง if-else if

คําสั่ง if-else if จะใชในกรณีที่มีทางเลือกใหทํางานมากกวา 2 ทางเลือก โดยแตละ
ทางเลือกมีเงื่อนไขตางกัน ดังนั้นเราจึงตองใชเรียกคําสั่ง if หลายครั้งเพื่อกําหนดเงื่อนไขสําหรับ
แตละทางเลือก รูปแบบการเรียกใชงานคําสั่ง if-else if แสดงไดดังนี ้

การทํางานจะเริ่มตั้งแตตัวแปลภาษา C ทําการตรวจสอบเงื่อนไขแรก ถาผลออกมาเปน
จริงก็จะทํางานตามคําสั่งของ if แตถาผลออกมาไมจริง ตัวแปลภาษา C จะทําการตรวจสอบ
เงื่อนไขที่ 2 ซ่ึงถาผลเปนจริงก็จะทํางานตามคําสั่งของ else if นั้น ถาไมจริง ตัวแปลภาษา C
จะทําการตรวจสอบเงื่อนไขอื่นเรียงตามลําดับตอไปจนเมื่อครบทุกเงื่อนไขแลวถาผลยังคงไมจริง
ตัวแปลภาษา C จะทํางานตามคําสั่งที่กําหนดไวที่ else

แผนภาพแสดงการทํางานของคําสั่ง if-else if แสดงไดดังนี ้

คําสั่ง if ซอน if
คําสั่ง if ซอน if จะใชกบัปญหาที่มีเงือ่นไขซับซอน อยางเชน กาํหนดวาตองเปน

จํานวนคูและมีคาไมเกิน 50 หรือเงื่อนไขตองเปนเพศชายอายุไมเกนิ 20 ป เปนตน ซ่ึงคําสั่ง if
ซอน if ก็คือคําสั่ง if ตามปกติ แตเรานาํมาเขียนซอนกันมากกวาหนึ่งชั้น

ในการทํางานตัวแปลภาษา C จะเริ่มจากการตรวจสอบเงื่อนไขแรก ถาเปนจริงก็จะ
ทํางานตอโดยการตรวจสอบเงื่อนไขที่ 2 และเงื่อนไขอืน่ ๆ ตอไปจนครบ โดยถาทุกเงื่อนไข
เปนจริงจึงจะทํางานตามคําสั่ง แตถาเงื่อนไขใดก็ตามไมเปนจริง ตัวแปลภาษา C จะออกจากการ
ทํางานของคําสั่ง if ซอน if ทันที

Condition เท็จ จริง

Condition-1
เปนจริง

Condition-2
เปนจริง

Condition-3
เปนจริง

ไมมีConditionใด
เปนจริง

ทํางานตามคําสั่ง
ของ if

 ทํางานตามคําสั่ง
ของ else if
ตัวแรก

 ทํางานตามคําสั่ง
ของ else if
ตัวที่ 2

 ทํางานตามคําสั่ง
ของ else

แผนภาพแสดงการทํางานของคําสั่ง if ซอน if แสดงไดดังนี ้

 การควบคุมทศิทางแบบวนรอบ หรือที่เรียกกนัวาการทาํงานแบบวนลปู (loop) ก็คือ การ
ที่เราเขียนโปรแกรมใหวนรอบทํางานซ้ําคําสั่งเดิม โดยมีการกําหนดเงื่อนไขเพื่อใหโปรแกรม
วนรอบทํางาน คําสั่งในภาษา C ที่ใชสําหรับควบคุมทิศทางแบบวนรอบ ไดแก while, do-while

และ for ซ่ึงแสดงรายละเอียดไดดังนี ้

 เท็จ

จริง

ทํางานตามคําสั่ง

Condition-2เท็จ

Condition-1เท็จ

Condition-n

. .

เท็จ

เท็จ

เท็จ

จริง

จริง

จริง

Condition เท็จ

จริง

ทํางานตามคําสั่งของ while

คําสั่ง while

กอนที่จะอธิบายการทํางาน เพื่อความเขาใจใหดูรูปแบบการเรียกใชงานคําสั่ง while ดังนี ้

วนรอบแบบ while จะเริ่มตนทํางานจากการตรวจสอบเงื่อนไข (condition) ถาเปนจริง

จะทํางานตามคําสั่งของ whil เมื่อเสร็จแลวก็จะวนกลับไปตรวจสอบเงื่อนไขใหม เปนเชนนีไ้ป
เร่ือย ๆ จนกวาเงื่อนไขจะไมเปนจริงจึงจะหลุดออกจากการทํางาน

แผนภาพแสดงการทํางานของวนรอบแบบ while แสดงไดดังนี ้

คําสั่ง for

คําสั่ง for ใชสําหรับการควบคุมทิศทางของโปรแกรมใหทํางานแบบวนรอบเชนเดียวกับ
while และ do-while แตคําสั่ง for มีรูปแบบการเรียกใชงานที่ตางไปจากคําสั่งอื่น ดังนี้

initial : เปนสวนที่ใชกําหนดคาเริ่มตนใหกับตัวแปร ซ่ึงตัวแปรนี้จะนํามาใชกําหนดเปน
เงื่อนไขดวย

condition : เงื่อนไขที่กําหนดขึ้นเพื่อใหโปรแกรมวนรอบทํางาน

change : สวนที่ทําการเปลี่ยนแปลงคาของตัวแปร ซ่ึงอาจจะเปนการเพิ่มหรือลดคาของ
ตัวแปรทีละหนึ่ง (Increment/Decrement) หรือมากกวานั้น เพื่อที่จะนําคาของตัวแปรนั้นไป
ตรวจสอบเงื่อนไขในรอบถัดไป

 while(condition)
 statement;

 while(condition)
 (
 statement-1;
 statement-2;
 …
 statement-n;
)

statement : คําสั่งที่จะใหวนรอบทํางาน ในกรณีที่ผลการตรวจสอบเงื่อนไขออกมาเปน
จริง

แผนภาพการทํางานของคําสั่ง for แสดงไดดังนี ้

Condition เท็จ

จริง

กําหนดคาเริ่มตน initial

ทํางานตามคําสั่งของ for

เปลี่ยนแปลงตัวแปร change

 ภาคผนวก ค

โปรแกรม Matlab

โปรแกรม MATLAB

 ในการศึกษาเกี่ยวกับ Adaptive Filter เราใชโปรแกรม Matlab เขามาชวยในการ
แสดงผล โดยจะอธิบายในสวนของคําสั่งและการแสดงผล ดังนี้

ค-1 เมตริกซและเวคเตอร
 การปอนคาเมตริกซใน Matlab สามารถกระทําไดงายมากเชน ถาตองการสรางตัวแปร a ให

เก็บเมตริกซ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

987

654

321

 สามารถสั่งได ดังนี ้

>>a = [1 2 3;4 5 6; 7 8 9];
หรือ a = [1 2 3;4 5 6; 7 8 9] ก็ได
สรุปวา เครื่องหมายคอมมา (,) หรือ วรรค ใชแบงระหวางคอลัมน และ เครื่องหมายเซ

มิโคลอน (;) ใชแบงระหวางแถว (สังเกตวาการเติมวรรคมากนอยไมมผีลตอ Matlab)
สวนเวคเตอรก็คือ เมตริกซที่มีแถวเดยีว (เรียกวา เวคเตอรแถว) หรือเมตริกซที่มีคอลัมน

เดียว (เรียกวา เวคเตอรคอลัมน) ซ่ึงสามารถปอนคาไดโดยวิธีเดียวกนัเชน
>>a = [1 2 3 4 5 6 7]; เวคเตอรแถว
>>a = [1; 2; 3;4; 5; 6; 7]; เวคเตอรคอลัมน

 สําหรับการสรางเวคเตอรแถวที่มีคาเปนเชงิเสน สามารถทําไดอยางสะดวกอีกวิธีหนึ่งโดย
ใชเครื่องหมายโคลอน (:) เชน
 >>a = 1:9 (หรือ a = [1:9]) จะใหคา a = [1 2 3 4 5 6 7 8 9]

>>a = 1:0.5 : 5 จะใหคา a = [1 1.5 2 2.5 3 3.5 4 4.5 5]
>>a = 3 : -2 : -10 จะใหคา a = [3 1 -1 -3 -5 -7 -9]

 สรุปวา รูปแบบการใชคือ [คาแรก : คาที่เพิ่มขึ้น : คาสุดทาย] โดยสามารถละ [] ได
และถาละคากลางก็จะถอืวา คาที่เพิ่มขึ้นเปน 1

ค-2 การกระทําทางเมตริกซ (Matrix operations)
 การบวกลบคูณหาร และยกกําลังของเมตริกซ สามารถกระทําไดโดยใชสัญลักษณ
เหมือนการกระทํากับคาสเกลาปกติ ขอควรระวัง คือ ขนาดของเมตริกซที่มากระทํากันตอง
ถูกตองตามกฎของการกระทาํนั้น ๆ เชน ถาเอา a*b โดย a และ b เปนเมตริกซ จะไดวาจํานวน
แถวของ a จะตองเทากับจาํนวนคอลัมนของ b เสมอ และถาเอา a^2 จะตองใช a ที่เปน
เมตริกซจัตุรัส (square) เสมอ เปนตน
 การกระทําที่จะขอแนะนําเพิม่เติมในทีน่ี้คือ transpose ซ่ึงทําไดโดยใชสัญลักษณ

เครื่องหมายคําพูดขีดเดยีว (∋) ดังนี ้

 >>b=a∋ ใหเมตริกซ b เปน transpose ของเมตริกซ a
 หมายเหตุ ถาสมาชิกใน a เปนจํานวนเชิงซอน การกระทํานี้จะเปน conjugate
transpose คือ นอกจาก transpose แลว ยังแปลงสมาชิกทุกตัวใน a เปนคาคอนจูเกตดวย (เปลี่ยน
เครื่องหมายของคาจนิตภาพ) ถาตองการ transpose ธรรมดาโดยไมมีคอนจูเกตใหใชเครื่องหมาย

.∋ แทนดังนี ้

 >>b=a.∋

การกระทําท่ีเขาถึงสมาชิกทุกตัวในเมตริกซ (Array operations)

 สมมติมีเวคเตอร (หรือเมตริกซ) ที่ขนาดเทากัน ดังนี ้
 >> a = [1 2 3];

>> b = [4 5 6];
 และตองการหาเวคเตอร ที่มสีมาชิกเปนผลคูณของสมาชิกแตละตวัที่ตําแหนงตรงกันของ
a กับ b ทําไดโดยใชเครื่องหมาย .* ดังนี้

 >> a.*b∋
 ans = [4 10 18]
 การกระทํากับสมาชกิตาง ๆ ไดนี้มีประโยชนมากในการประมวลผลสัญญาณ ซ่ึงนอกจาก
.* แลว ยังมกีารกระทําในทาํนองนี้อีก คือ
 >> a./b เอาสมาชิกแตละตัวของ a กับ b มาหารกัน
 >> a.^b เอาสมาชิกแตละตัวของ a ยกกําลังดวยสมาชิกแตละตวัของ b

>> a.^3 เอาสมาชิกแตละตัวของ a ยกกําลังดวย 3
>> a+3 เอาสมาชิกแตละตัวของ a บวกดวย 3 (ลบก็ทําไดเชนเดียวกัน)

สังเกตวา ไมมีการกระทํา .+ และ .- เพราะ การบวกลบเมตริกซเปนการกระทํากบั
สมาชิกแตละตัวอยูแลว

สําหรับฟงกช่ันของคาสเกลาตาง ๆ เมื่อนํามากระทํากับเมตริกซ ก็จะมีผลเปนการกระทํา
กับสมาชิกแตละตัวในเมตรกิซ และใหผลลัพธเปนเมตริกซขนาดเทาเดิม เชน

>> sin(n) หาคา sin ของสมาชิกแตละตัวของ a

การอางถึงสมาชิกภายในเมตริกซ (หรือเวคเตอร)

ถามีเมตริกซ a =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

987

654

321

เราสามารถอางถึงสมาชิกแตละตัวใน a ไดโดยใชรูปแบบ a (แถว), คอลัมน) เชน a(2,3)

จะไดคาเปน 6 เปนตน ทีพ่ิเศษไปกวานัน้ก็คือ Matlab อนุญาตใหเราอางคาในเมตริกซไดหลาย ๆ
คาพรอม ๆ กัน เพื่อสรางเปนเมตริกซ หรือเวคเตอรใหมได เชน
 >> a([1 2] , [2 3]) หรือ a(1:2 , 2:3) อางถึงแถวที่ 1 กับ 2 และคอลัมนที่ 2 กับ 3

 ans =

>> a(2 , [13]) อางถึงแถวที่ 2 และคอลัมนที่ 1 กับ 3

 ans = [4 6]
>> a(2 , :) อางถึงแถวที่ 2 ทั้งแถว
 ans = [4 5 6]

>> a(2 , :) อางถึงคอลัมนที่ 2 ทั้งคอลัมน (สังเกตการใช :)

 ans =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

8

2

⎥
⎦

⎤
⎢
⎣

⎡
65

32

 โดยสรุปก็คือเราสามารถใช “เวคเตอรเปนตัวช้ี” ได แทนที่จะใชสเกลเฉย ๆ สําหรับการ
อางคาในเวคเตอรก็สามารถทําไดในทํานองเดียวกัน เพียงแตใชตวัช้ีเพยีงตัวเดียว เชน

>> a=[1 2 3 4 5 6 7 8 9];
>> a(3) อางถึงคาที่ 3
 ans = 3
>> a(2:5) หรือ a([2:5]) อางถึงคาที่ 2 ถึง 5
 ans = [2 3 4 5]
>> a(1:2:9) อางถึงคาที่ 1, 3, 5, 7 และ 9
 ans = [1 3 5 7 9]

 ค-2.1 ฟงกช่ันภายในMatlab มีฟงกช่ันพืน้ฐานอยูมากมาย และก็มวีธีิใชบอกไวดวยใน
ซอฟทแวร เราสามารถดูวามีฟงกช่ันชื่ออะไรอยูบาง และใชทําอะไร โดยใชเมาสเลือก Help ที่
เมนู หรือพิมพ help ก็ได โดยฟงกช่ันตาง ๆ ไดจัดไวเปนหมวดหมูอยางดี ในกรณทีี่เรารูช่ือ
ฟงกช่ันแตจําวธีิใชไมได ก็สามารถเรียกดูวธีิใชไดโดยพิมพ help แลวตามดวยช่ือฟงกช่ัน เชน
 >> help plot ขอดูวิธีใชฟงกช่ัน plot
 ในที่นี้ขอสรุปฟงกช่ันที่สําคญับางสวนไว ดังตอไปนี้ (ใหดูวิธีใชโดยละเอียดจาก help)
 ฟงกช่ันเกี่ยวกบัการสรางเมตริกซ

>> zeros(n,m) ใหเมตริกซที่มสีมาชิกเปน 0 หมด ขนาด n × m

>> ones(n,m) ใหเมตริกซที่มสีมาชิกเปน 1 หมด ขนาด n × m

>> eye(n) ใหเมตริกซ identity ขนาด n × n

>> rand(n,m) ใหเมตริกซมีคาแรนดอม 0 ถึง 1 ขนาด n × m

>> randn(n,m) ใหเมตริกซมีคาแรนดอมแบบเกาสเซียน ขนาด n × m
ฟงกช่ันของสเกลา
sin, cos, tan, asin, acos, atan, atan2 ฟงกช่ันตรีโกณมิต ิ
sinh, cosh, tanh, asinh, acosh, atanh ฟงกช่ันไฮเปอรโบลิก
exp (เอกโปเนนเชียล), log (ลอกการิธึมฐาน e), log10 (ลอกการิธึมฐานสิบ)
abs (หาขนาด), sign (หาเครื่องหมาย), rem (หาเศษจากการหาร)
round (ปดทศนิยม), floor (ปดทศนิยมทิ้ง), ceil (ปดทศนยิมขึ้น)
sqrt (หารากทีส่อง)

ฟงกช่ันของเวคเตอร
max (หาคามากที่สุด), min (หาคานอยที่สุด), length (หาจํานวนสมาชิก)
mean (หาคาเฉลี่ย), median (หาคากลาง), std (หาคาเบี่ยงเบนมาตรฐาน)
sum (หาผลรวม), sort (เรียงลําดบัคาจากนอยไปมาก)
roots (หาคารากของโพลิโนเมียล)
ฟงกช่ันของเมตริกซ
Size (หาขนาด), eig (หาคา eigen), det (หาคา determinant)

 ค-2.2 คําสั่งเกี่ยวกับการวนลูป และเปรียบเทยีบMatlab มีคําสั่งสําหรับการวนลูป และ
เปรียบเทียบเชนเดียวกับภาษาสูงทั่ว ๆ ไป คําสั่งเหลานี้มีประโยชนมากในการเขยีนในโปรแกรม
สคริปต ซ่ึงไดแก
 คําสั่ง if มีรูปแบบการใช คือ
 If <เงื่อนไข>
 <คําสั่ง>
 elseif <เงื่อนไข> (elseif จะมหีลายครั้งก็ได)
 <คําสั่ง>

 else
 <คําสั่ง>
 end
 <คําสั่ง> ประกอบดวย คําสั่ง หรือ การเรียกฟงกช่ัน หลาย ๆ คําสั่งก็ได
 <เงื่อนไข> คือ ประโยคที่เปรียบเทียบเพื่อใหคา 0 ถาเปนเท็จ และใหคา 1 ถาเปนจริง เชน
 if a == b & ok ถา a เทากับ b และ ok เทากับ 1

 a = a+1; ใหเพิ่มคา a ขึ้นหนึ่ง
else ถาไมเชนนั้น
 a = a–1; ใหลดคา a ลงหนึ่ง
end

 การกระทําที่ใชสําหรับเปรียบเทียบมีอยูหลายตัว สรุปไดดังนี ้

== เทากับ ∼= ไมเทากับ

< นอยกวา > มากกวา
<= นอยกวาหรือเทากับ >= มากกวาหรือเทากับ

 และการกระทาํที่ใชเชื่อมเงื่อนไข ไดแก
 & และ (and) | หรือ (or)

∼ ไม (not)
การกระทําทั้งสองหมวดนีจ้ริง ๆ แลวยังมวีิธีการใชเหมอืนกับการใชการกระทําบวก/ลบที่

ไดกลาวมาแลว เพยีงแตจะใหผลลัพธเปน 0 กับ 1 เทานั้น เชน
การเปรียบเทยีบเมตริกซกับคาคงที่
>>a = [1 2 3 4] > 2
 a = [0 0 1 1]
จะเอาคาสมาชกิทุกตวัเปรียบเทียบวามากกวา 2 หรือไม สรางเปนเมตริกซใหมซ่ึงเปนผล

ลัพธของการเปรียบเทียบ (ถาการเปรียบเทียบเปนจริงใหคาเทากับหนึง่ ถาเปนเท็จใหคาเทาศูนย)
 หรือ การเปรียบเทียบเมตริกซ กับเมตริกซ
 >>a = [1 2 3 4] == [1 4 3 5] เปรียบเทยีบสมาชิกที่ตําแหนงตรงกันวาเทากนัหรือไม
 a = [1 0 1 0]

 คําสั่ง while มีรูปแบบการใชคือ
 while <เงื่อนไข>

<คําสั่ง>
end

 เชน i = 10; a=1;
 While i >1
 a = a*i;
 i = i-1;
 end
 โปรแกรมนี้จะหาคาสุดทายของ a เปน 10! (10 แฟคทอเรียล) ซ่ึงเทากับ 10*9*8 1

 คําสั่ง for มีรูปแบบการใชคือ
 for ตัวแปรลูป = คาตน: คาที่เพิ่ม: คาสุดทาย

 <คําสั่ง>
 end
เชน a=1;
 For i = 1:10
 a = a*i;
 end
เชนเดียวกัน โปรแกรมนี้จะหาคา 10! เชนกัน ขอสังเกตความแตกตางจากการใช while

โดยปกติถาเรารูคาเริ่มตน และคาสิ้นสุดของการวนลูป การใช for จะสะดวกกวา
 เทคนิค ถาตองการหยุดการทํางานของลูป หรือของโปรแกรมขณะที่มันกําลังทํางานอยู
ใหกด ctrl-C

ค-3 การวาดกราฟ
 กราฟกลาวไดวาเปนสิ่งที่สําคัญที่สุดในการวิเคราะห และแสดงผล Matlab สามารถ
วาดกราฟไดหลายชนิดทั้งสองมิติและสามมิติ กราฟที่แสดงในหนาปกของหนังสือนี้ก็วาดจาก
Matlab ในที่นี้จะขอแนะนําเฉพาะการวาดกราฟสองมิติเทานั้น
 สมมติวาเรามีเวคเตอร t, x, y ซ่ึงเกิดจากฟงกช่ัน gensine ที่เขียนไวในหัวขอเร่ือง
โปรแกรมฟงกช่ัน ดังนี้
 >> [t,s] = gensine(50,1000);
 >> [t,y] = gensine(20,1000);

 เราตองการวาดกราฟของ x และ y ในรูปเดียวกันโดยมี t เปนแกนนอน สามารถทําได
ดังนี้
 >> plot(t,x) วาดโดยใช t เปนแกนนอน และ x เปนแกนตั้ง
 >> hold on คางรูปเอาไว (การวาดครั้งตอไป จะวาดซอนบนรูปเดิม)

>> plot(t, y, ∋b-.∋) วาด y โดยคราวนี้ใชสีน้ําเงิน และเปนเสนปะขีดสลับจุด
>> gird วาดเสนกริด
>> axis([0 0.1 -1.5 1.5]) ปรับชวงของการแสดงผลใหแกนนอนอยูระหวาง 0 ถึง

0.1 และแกนตั้งอยูระหวางคา -1.5 ถึง 1.5

>> xlabel(∋time(sec)∋) เขียนคําอธิบายแกนนอน

>> ylabel(∋signal(V)∋) เขียนคําอธิบายแกนตั้ง

>> title(∋Samples of Sine Waves∋) เขียนคําอธิบายบนหวัรูป
>> hold off ยกเลิกการคางรูป (การวาดครั้งตอไปจะลบรูปเกาทิ้ง

กอน)
 ภาพที่ ก-1 แสดงผลลัพธของรูปที่ไดจากคําสั่งเหลานี้

 สรุป วาคําสั่ง plot ตองการตัวแปรเขา 3 ตัว คือ
 Plot (เวคเตอรของแกนนอน, เวคเตอรของแกนตั้ง, รูปแบบของสีและลายเสน)
 โดยอยางนอยเราตองใสคาเวคเตอรของแกนตั้งเสมอ เชน ลองส่ัง plot(x) ดู จะพบวา
Matlab ใชคําวา 1, 2, 3, เปนแกนนอน สําหรับรูปแบบของสีและลายเสนใหใสเปนขอความ

ภายในเครื่องหมาย ∋∋ โดยอักษรตวัแรกเปนตัวกําหนดสี และตัวตอไปกําหนดลายเสน โดยมี
ความหมายคือ
 b สีน้ําเงิน, r สีแดง, k สีดํา, w สีขาว, y สีเหลือง, m สีมวง, c สีฟา, g สีเขียว
 - เสนปกต,ิ : เสนปะไขปลา, -- เสนปะขีด, -. เสนปะขีดสลับจุด,

. จุด, * จุดดอกจัน, + จุดกากบาท, x จุดกากบาท, o จุดวงกลม
การวาดกราฟหลาย ๆ เสนในรูปเดียวกนันอกจากทําโดยใชคําสั่ง hold แลว ยังสามารถสั่ง

ให plot ทีเดียวหลาย ๆ เสนไดเลย โดยคําสั่งตอไปนี้ซ่ึงมีผลเหมือนขางตน
คําสั่งอื่นที่เกี่ยวกับการวาดกราฟที่สําคัญไดแก
whitebg เปลี่ยนสีพื้นของรูปเปนสีขาว มีประโยชนมากถาจะพิมพรูปออกเครื่องพิมพ

คําสั่งนี้คร้ังเดียวตอนเปด Matlab ซ่ึงเราอาจใสไวใน \matlab\bin\startup.m เลยก็ได
stem ใชแทน plot สําหรับวาดรูปเปนจุด และมขีีดแกนตั้งใหดวย
semilogx และ semilogy ใชแทน plot สําหรับวาดรูปทีแ่กนนอน หรือตั้งเปนสเกลล็อก
figure เปดรูปใหม (ในหนาตางใหม)
elf ลบรูปปจจุบัน
zoom ขยายรูปที่แสดงผลอยู โดยหลังจากใชคําสั่ง zoom แลว ใหกดปุมซายของเมาส

คางไวแลวลากเมาสเพื่อตีกรอบภายในบริเวณของรูปกราฟ เมื่อปลอยปุมเมาส รูปในกรอบก็จะถูก
ขยาย ถาตองการหดรูปเหมอืนเดิมใหกดปุมขวาของเมาสที่บริเวณรูปนั้น

Subplot(n,m,i) หรือ subplot(nmi) แบงรูปยอยในหนาตางเดียวกัน ใหมี n × m รูป
ยอยและชี้ที่รูปที่ i ตัวอยางเชน subplot(231) แบงเปนรูปยอย 6 รูป และชี้ที่รูปที่ 1 ดังแสดงใน
รูปที่ ก.2 รูปยอยแตละรูปมีการตั้งคาตาง ๆ แยกอิสระตอกันเหมือนเปนคนละรูป ซ่ึงเราตองใช
คําสั่ง subplot ระบุ หรือใชเมาสคลิกที่รูปยอยหนึ่ง ๆ เพื่อยายไปกระทํากับรูปยอยนั้น

 DSP Toolbox หรือ Signal Processing Toolbox เปนชุดฟงกช่ันพิเศษซึ่งเพิ่มเติมเขามา
ใน Matlab (ซ่ึงผูใชตองซื้อเพิ่มเติมเอง) ฟงกช่ันเหลานี้เกี่ยวของกับการประมวลผลสัญญาณทั้งใน
การวิเคราะห และออกแบบ ในที่นี้จะขอสรุปฟงกช่ันที่สําคัญซึ่งสําหรับใชในการประมวลผล
สัญญาณขั้นพื้นฐานเทานั้น โดยอางอิงกับ DSP Toolbox เวอรช่ัน 3.0

ฟงกชัน่สําหรบัคํานวณ และวิเคราะหตัวกรอง
 Sinc ฟงกช่ันซิงค

conv คอนโวลูชัน
fiftfilt คอนโวลูชันแบบเร็วโดยวิธี overlap-add
filter ตัวกรองดจิิตอล
freqz วาดผลตอบสนองเชิงความถี่ของระบบ
grpdelay หาความเรว็กลุมของระบบ
impz หาผลตอบสนองตออิมพัลสของระบบ

unwrap ปรับเวคเตอรที่เปนคาเฟสทีถู่กจํากัดอยูใน -π ถึง π ใหขยายออกนอก
ยานนีไ้ด

 zplane วาดแผนภาพโพล/ศูนย

ฟงกชัน่ท่ีใชจัดรูปแบบของฟงกชัน่ถายโอน
 residuez กระจายฟงกช่ันเปนเศษสวนยอย

sos2tf แปลงจากรูปแบบผลคูณของเทอมอันดับสอง เปนรูปแบบเศษสวนรวม
sos2zp แปลงจากรูปแบบผลคูณของเทอมอันดับสอง เปนรูปแบบกระจายคาโพล

และศูนย
 tf2zp แปลงจากรูปแบบเศษสวนรวม เปนรูปแบบผลคูณของเทอมอันดับสอง

zp2sos แปลงจากรูปแบบกระจายคาโพลและศูนย เปนรูปแบบผลคูณของเทอม
อันดับสอง

 zp2tf แปลงจากรูปแบบกระจายคาโพลและศูนย เปนรูปแบบเศษสวนรวม

ฟงกชัน่สําหรบัออกแบบตัวกรองแบบ IIR
 butter ออกแบบตัวกรอง Butterworth

cheby1 ออกแบบตัวกรอง Chebyshev type I
cheby2 ออกแบบตัวกรอง Chebyshev type II
ellip ออกแบบตัวกรอง Elliptic
yulewalk ออกแบบตัวกรอง Yule-Walker
buttord หาอันดับของตัวกรอง Butterworth
cheb1ord หาอันดับของตัวกรอง Chebyshev type I
cheb2 ord หาอันดับของตัวกรอง Chebyshev type II filter
ellipord หาอันดับของตัวกรอง Elliptic filter

ฟงกชัน่สําหรบัออกแบบตัวกรองแบบ FIR
 Fir1 ออกแบบโดยวิธีหนาตาง

Fir2 ออกแบบโดยวิธีสุมความถี่
remez ออกแบบโดยวิธี Parks-McClellan
remezord หาอันดับของตัวกรองโดยวธีิ Parks-McClellan

ฟงกชัน่การแปลง
 fit การแปลง FFT

fitshift สลับผลตอบครึ่งบนของ FFT มาเปนครึ่งลาง
hilbert การแปลง Hilbert
ifft การแปลง FFT ผกผัน
psd หา Power Spectral Density
xcorr หา Cross-correlation
specgram หา Spectrogram
bilinear การแปลง Bilinear

ฟงกชัน่หนาตาง
 bartlett หนาตาง Bartlett
 blackman หนาตาง Blackman
 boxcar หนาตางสี่เหล่ียม
 chebwin หนาตาง Chebyshev

hamming หนาตาง Hamming
hanning หนาตาง Hanning
kaiser หนาตาง Kaiser
triang หนาตาง Triangular

ฟงกชัน่การแปลงอัตราการสุม
 decimate decimator
 interp interpolator
 resample แปลงอัตราการสุมดวยอัตรา I/D เทา

ฟงกชัน่เพื่อหาตัวกรองแอนะลอกตนแบบ
 besselap ตัวกรองตนแบบ Bessel

buttap ตัวกรองตนแบบ Butterworth
cheb1ap ตัวกรองตนแบบ Chebyshev type I
cheb2ap ตัวกรองตนแบบ Chebyshev type II
ellipap ตัวกรองตนแบบ Elliptic
Ip2bp การแปลง LPF เปน BPF
Ip2bs การแปลง LPF เปน BSF
Ip2ph การแปลง LPF เปน HPF
Ip2lp การแปลง LPF เปน LPF

ฟงกชัน่พิเศษเพื่อแสดงการใชงาน
 filtdemo แสดงการออกแบบตัวกรองดิจิตอล

sosdemo แสดงการลักษณะของฟงกช่ันถายโอนยอยอันดับสอง

ภาคผนวก ง

โปรแกรมที่ใชทดลอง

โปรแกรมที่ใชทดลอง

ง-1 การออกแบบที่ 1 การจําลองโดยโปรแกรม Matlab
clc
close all;
clear all;

N = 0;
%Create the signal
%Original signal -this would be the ECG signal as seen at the
%electrodes.
%Hear ,it will be represented as a simuusoid

t = linspace(1,35,100);
%t = 1:1/300:15;
%E0103_1;

Heartbeat = sin(2*pi*.1*t); %+(1/3)*sin(2*pi*0.3*t)+(1/5)*sin(2*pi*0.5*t);

%Noise signal -a 50Hz sinusoid

Noise = 0.8*sin(2*pi*100*t);

%Shifted and scaled noise signal this is done to show the convergence
%of the algolithm is not dependent on magnitude or phase matching
%between the reference noise and the EGG signal

reference = 0.5*sin(2*pi*100.*t);% + pi/2);

%Signal pluse Noise

primary = Heartbeat + Noise;

%Perform adaptive filtering using a LMS algorithm Set the filter order
%to 2,and the step size to 0.1

%output = anc(primary,reference,2,0.1);
 afOrder = 2;
 mu = 0.1;
 N = length(primary);
 we = zeros(1,afOrder);
 adjustment = zeros(1,afOrder);
 we1 = 0;

for k = 1:N
 we = reference(k);
 y = we * adjustment';
 output = primary(k) - y;

 output1 = output';
 output1 = output1*[1;0];
 output2(k) = output1;

 adjustment1 = adjustment' + 2*mu*output.* we;
 adjustment = adjustment1';
 we(2:afOrder) = we(1:afOrder-1);

end

%Display all signals

figure(1);
subplot(4,1,1);
plot(t,Heartbeat);
ylabel('Original ECG');

subplot(4,1,2);
plot(t,reference);
ylabel('Noise');

subplot(4,1,3);
plot(t,primary);
ylabel('ECG+Noise');

subplot(4,1,4);
plot(t,output2);
ylabel('Filtered ECG');

ง-2 การออกแบบที่ 2 การสรางจริงโดยใชภาษาซ ี

 จะยกตัวอยางโปรแกรมแสดงผลที่ ความถี่ 50 Hz โดยคา γ จะเปลีย่นจาก 0.001 –
0.005 ตามลําดับ

 ง-2.1 ให γ = 0.001 ความถี่ 50 Hz

#include "aiccomc.c" /*AIC comm routines */
#include "math.h" /*math library function */
#define beta 0.001 //9E-5 //0.00001 //1E-5 it OK 1.5E-8

#define N 36 /* Coefficients*/
#define samp 4984.05//4509.4 /*sample frequency */
#define Fosc 50 /*desired frequency */
#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x7EFE,0x63}; /*AIC Config Data*/
int AICSEC[4] = {0x162C,0x1,0x72e6,0x63}; /*AIC config data*/
//#define samp 8000 //7891.41 /*sample frequency */
//#define Fosc 50.0 /*desired frequency */
//#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC Config Data*/
//int AICSEC[4] = {0x0E1C,0x1,0x3872,0x67}; /*AIC config data*/
 main()
{
 float Fs, Fsin, w, P, A, B, C,DPLUSN,Z,E,output;
float W[N+1];
float Delay[N+1];
float REFNOISE;
int n = 0, result,imp,input,refinput,refno,T,I;
 float y1=1.0,y2=1.0,y;
 AICSET(); /*initialize AIC */
 Fs = samp;
 Fsin = Fosc;
 P = 1/Fs;
 w = 2*pi*Fsin;
 A = 2 * cos((w * P));
 B = 1.0;
 C = sin((w * P));

for (T=0; T<N; T++)
 {

 W[T] = 0.0;
 Delay[T] = 0.0;
 }

 while(1)
 {
 TWAIT;
 if(n==0) imp=1;
 else imp=0;
 y = A*y1 - B*y2 + C*imp;
 REFNOISE = y;
 y2=y1; y1=y;
 n=1;
 Delay[0] = REFNOISE; //New noise sample

 input=UPDATE_SAMPLE(result);
 DPLUSN = input;
 Z=0; //filter output set tp zero

 for (I=0; I<N; I++)
 Z += (W[I]*Delay[I]);
 E = DPLUSN-Z;
 for (I = N; I>0; I--)
 {
 W[I] = W[I] + (beta*E*Delay[I]);
 if (I != 0)
 Delay[I] = Delay[I-1];
 }
 output =E;
 result = (int)(output); /* remove *1000 */

 DPLUSN=DPLUSN;
 }
}

 ง-2.2 ให γ = 0.002 ความถี่ 50 Hz
#include "aiccomc.c" /*AIC comm routines */
#include "math.h" /*math library function */
#define beta 0.002 //9E-5 //0.00001 //1E-5 it OK 1.5E-8
#define N 36 /* Coefficients*/
#define samp 4984.05//4509.4 /*sample frequency */
#define Fosc 50 /*desired frequency */
#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x7EFE,0x63}; /*AIC Config Data*/
int AICSEC[4] = {0x162C,0x1,0x72e6,0x63}; /*AIC config data*/
//#define samp 8000 //7891.41 /*sample frequency */
//#define Fosc 50.0 /*desired frequency */
//#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC Config Data*/
//int AICSEC[4] = {0x0E1C,0x1,0x3872,0x67}; /*AIC config data*/
 main()
{
 float Fs, Fsin, w, P, A, B, C,DPLUSN,Z,E,output;
float W[N+1];
float Delay[N+1];
float REFNOISE;
int n = 0, result,imp,input,refinput,refno,T,I;
 float y1=1.0,y2=1.0,y;
 AICSET(); /*initialize AIC */
 Fs = samp;
 Fsin = Fosc;
 P = 1/Fs;

 w = 2*pi*Fsin;
 A = 2 * cos((w * P));
 B = 1.0;
 C = sin((w * P));

for (T=0; T<N; T++)
 {
 W[T] = 0.0;
 Delay[T] = 0.0;
 }

 while(1)
 {
 TWAIT;
 if(n==0) imp=1;
 else imp=0;
 y = A*y1 - B*y2 + C*imp;
 REFNOISE = y;
 y2=y1; y1=y;
 n=1;
 Delay[0] = REFNOISE; //New noise sample

 input=UPDATE_SAMPLE(result);
 DPLUSN = input;
 Z=0; //filter output set tp zero

 for (I=0; I<N; I++)
 Z += (W[I]*Delay[I]);
 E = DPLUSN-Z;
 for (I = N; I>0; I--)

 {
 W[I] = W[I] + (beta*E*Delay[I]);
 if (I != 0)
 Delay[I] = Delay[I-1];
 }
 output =E;
 result = (int)(output); /* remove *1000 */
 DPLUSN=DPLUSN;
 }
}

 ง-2.3 ให γ = 0.003 ความถี่ 50 Hz
#include "aiccomc.c" /*AIC comm routines */
#include "math.h" /*math library function */
#define beta 0.003 //9E-5 //0.00001 //1E-5 it OK 1.5E-8
#define N 36 /* Coefficients*/
#define samp 4984.05//4509.4 /*sample frequency */
#define Fosc 50 /*desired frequency */
#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x7EFE,0x63}; /*AIC Config Data*/
int AICSEC[4] = {0x162C,0x1,0x72e6,0x63}; /*AIC config data*/
//#define samp 8000 //7891.41 /*sample frequency */
//#define Fosc 50.0 /*desired frequency */
//#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC Config Data*/
//int AICSEC[4] = {0x0E1C,0x1,0x3872,0x67}; /*AIC config data*/
 main()
{
 float Fs, Fsin, w, P, A, B, C,DPLUSN,Z,E,output;
float W[N+1];

float Delay[N+1];
float REFNOISE;
int n = 0, result,imp,input,refinput,refno,T,I;
 float y1=1.0,y2=1.0,y;
 AICSET(); /*initialize AIC */
 Fs = samp;
 Fsin = Fosc;
 P = 1/Fs;
 w = 2*pi*Fsin;
 A = 2 * cos((w * P));
 B = 1.0;
 C = sin((w * P));

for (T=0; T<N; T++)
 {
 W[T] = 0.0;
 Delay[T] = 0.0;
 }

 while(1)
 {
 TWAIT;
 if(n==0) imp=1;
 else imp=0;
 y = A*y1 - B*y2 + C*imp;
 REFNOISE = y;
 y2=y1; y1=y;
 n=1;
 Delay[0] = REFNOISE; //New noise sample

 input=UPDATE_SAMPLE(result);
 DPLUSN = input;
 Z=0; //filter output set tp zero

 for (I=0; I<N; I++)
 Z += (W[I]*Delay[I]);
 E = DPLUSN-Z;
 for (I = N; I>0; I--)
 {
 W[I] = W[I] + (beta*E*Delay[I]);
 if (I != 0)
 Delay[I] = Delay[I-1];
 }
 output =E;
 result = (int)(output); /* remove *1000 */
 DPLUSN=DPLUSN;
 }
}

 ง-2.4 ให γ = 0.004 ความถี่ 50 Hz
#include "aiccomc.c" /*AIC comm routines */
#include "math.h" /*math library function */
#define beta 0.004 //9E-5 //0.00001 //1E-5 it OK 1.5E-8
#define N 36 /* Coefficients*/
#define samp 4984.05//4509.4 /*sample frequency */
#define Fosc 50 /*desired frequency */
#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x7EFE,0x63}; /*AIC Config Data*/
int AICSEC[4] = {0x162C,0x1,0x72e6,0x63}; /*AIC config data*/
//#define samp 8000 //7891.41 /*sample frequency */

//#define Fosc 50.0 /*desired frequency */
//#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC Config Data*/
//int AICSEC[4] = {0x0E1C,0x1,0x3872,0x67}; /*AIC config data*/
 main()
{
 float Fs, Fsin, w, P, A, B, C,DPLUSN,Z,E,output;
float W[N+1];
float Delay[N+1];
float REFNOISE;
int n = 0, result,imp,input,refinput,refno,T,I;
 float y1=1.0,y2=1.0,y;
 AICSET(); /*initialize AIC */
 Fs = samp;
 Fsin = Fosc;
 P = 1/Fs;
 w = 2*pi*Fsin;
 A = 2 * cos((w * P));
 B = 1.0;
 C = sin((w * P));

for (T=0; T<N; T++)
 {
 W[T] = 0.0;
 Delay[T] = 0.0;
 }

 while(1)
 {
 TWAIT;

 if(n==0) imp=1;
 else imp=0;
 y = A*y1 - B*y2 + C*imp;
 REFNOISE = y;
 y2=y1; y1=y;
 n=1;
 Delay[0] = REFNOISE; //New noise sample

 input=UPDATE_SAMPLE(result);
 DPLUSN = input;
 Z=0; //filter output set tp zero

 for (I=0; I<N; I++)
 Z += (W[I]*Delay[I]);
 E = DPLUSN-Z;
 for (I = N; I>0; I--)
 {
 W[I] = W[I] + (beta*E*Delay[I]);
 if (I != 0)
 Delay[I] = Delay[I-1];
 }
 output =E;
 result = (int)(output); /* remove *1000 */
 DPLUSN=DPLUSN;
 }
}

 ง-2.5 ให γ = 0.005 ความถี่ 50
#include "aiccomc.c" /*AIC comm routines */
#include "math.h" /*math library function */
#define beta 0.005 //9E-5 //0.00001 //1E-5 it OK 1.5E-8
#define N 36 /* Coefficients*/
#define samp 4984.05//4509.4 /*sample frequency */
#define Fosc 50 /*desired frequency */
#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x7EFE,0x63}; /*AIC Config Data*/
int AICSEC[4] = {0x162C,0x1,0x72e6,0x63}; /*AIC config data*/
//#define samp 8000 //7891.41 /*sample frequency */
//#define Fosc 50.0 /*desired frequency */
//#define pi 3.14159265 /*constant pi */
//int AICSEC[4] = {0x162C,0x1,0x4892,0x67}; /*AIC Config Data*/
//int AICSEC[4] = {0x0E1C,0x1,0x3872,0x67}; /*AIC config data*/
main()
{
 float Fs, Fsin, w, P, A, B, C,DPLUSN,Z,E,output;
float W[N+1];
float Delay[N+1];
float REFNOISE;
int n = 0, result,imp,input,refinput,refno,T,I;
 float y1=1.0,y2=1.0,y;
 AICSET(); /*initialize AIC */
 Fs = samp;
 Fsin = Fosc;
 P = 1/Fs;
 w = 2*pi*Fsin;
 A = 2 * cos((w * P));
 B = 1.0;

 C = sin((w * P));
for (T=0; T<N; T++)
 {
 W[T] = 0.0;
 Delay[T] = 0.0;
 }
 while(1)
 {
 TWAIT;
 if(n==0) imp=1;
 else imp=0;
 y = A*y1 - B*y2 + C*imp;
 REFNOISE = y;
 y2=y1; y1=y;
 n=1;
 Delay[0] = REFNOISE; //New noise sample
 input=UPDATE_SAMPLE(result);
 DPLUSN = input;
 Z=0; //filter output set tp zero
 for (I=0; I<N; I++)
 Z += (W[I]*Delay[I]);
 E = DPLUSN-Z;
 for (I = N; I>0; I--)
 {
 W[I] = W[I] + (beta*E*Delay[I]);
 if (I != 0)
 Delay[I] = Delay[I-1];
 }
 output =E;
 result = (int)(output); /* remove *1000 */

 DPLUSN=DPLUSN;
 }
}

ประวัติผูวิจัย

ช่ือ : นายชลิต จิตตสวัสดิ์ไทย

ช่ือวิทยานพินธ : การลดทอนสัญญาณรบกวนบนคลื่นไฟฟาหวัใจโดยใชตวักรองเชงิเลขแบบ
 ปรับตัวได
สาขาวิชา : อุปกรณการแพทย

ประวัต ิ

ประวัติสวนตวั เกดิเมื่อวันที่ 29 มิถุนายน 2518 ที่จังหวัดพระนครศรีอยุธยา

ประวัติการศึกษา จบมัธยมศึกษาปที่ 6 จากโรงเรียนอยุธยาวิทยาลัย, จบโรงเรียนจาอากาศ
เหลาตนหน จาํพวกบังคับการบิน(ตห.บบ) นจอ.รุน36, จบการศึกษาระดับอนุปริญญา สาขาวิชา
อิเล็กทรอนิกสจากมหาวิทยาลัยราชภัฎนครปฐม, จบการศกึษาระดับปริญญาตรี สาขาเทคโนโลยี
อุตสาหกรรม(ไฟฟา)จากมหาวิทยาลัยราชภัฎพระนครศรีอยุธยา, จบการศึกษาระดับปริญญาตรี
สาขาเทคโนโลยีอุตสาหกรรม(อิเล็กทรอนกิส)จากมหาวทิยาลัยราชภัฎพระนคร

ประวัติการทํางาน รับราชการอยูที่โรงเรียนการบิน อําเภอกําแพงแสน จังหวัดนครปฐม

ตําแหนง เจาหนาที่ควบคุมอากาศยาน เขา-ออก (พ.ศ.2538-2542), รับราชการที่ศูนยบริการการบิน
ดอนเมือง ตําแหนง เจาหนาที่ขาวสารการบิน (พ.ศ.2542-2548)และรับราชอยูที่สํานักปองกันและ
บรรเทาสาธารณภยั สังกัดกรุงเทพมหานคร

	Ti
	บทคัดย่อ
	Abstract
	กิตติกรรมประกาศ
	สารบัญ
	บทที่ 1 บทนำ
	1.1 ความสำคัญและที่มาของโครงงาน
	1.2 วัตถุประสงค์โครงงาน
	1.3 ขอบเขตของโครงงาน
	1.6 ประโยชน์ที่คาดว่าจะได้รับ

	บทที่ 2 ตัวกรองสัญญาณเชิงตัวเลขแบบปรับตัวเอง
	2.1 อัลกอรึธึมปรับตัวเองแบบลีสท์มีนแสควร์
	2.2 การประยุกต์ใช้งานตัวกรองสัญญาณแบบปรับตัวเอง
	2.3 การคาดคะเนแบบปรับตัวเอง
	2.4 การปรับระดับสัญญาณแบบปรับตัวเอง
	2.5 การกำจัดสัญญาณสะท้อนแบบปรับตัวเอง
	2.6 การกำจัดสัญญาณปะปนแบบปรับตัวเอง
	2.7 ตัวจำกัดสัญญาณปะปนแบบปรับตัวเอง
	2.8 ตัวกรองสัญญาณแบบเอฟไออาร์
	2.9 ตัวกรองสัญญาณแบบไอไออาร์
	2.10 การออกแบบตัวกรองดิจิตอลแบบไอไออาร์ด้วยวิธีประมาณค่าเบี่ยงเบน
	2.11 การออกแบบตัวกรองดิจิตอลแบบไอไออาร์ด้วยวิธีการแปลงเชิงเส้นคู่
	2.12 การแปลงความถี่

	บทที่ 3 อุปกรณ์และวิธีการทดลอง
	3.1 การสร้างสัญญาณรบกวนแบบปรับตัวเอง
	3.2 การสร้างคลื่นไฟฟ้าหัวใจจากเครื่องวัดคลื่นไฟฟ้าหัวใจจำลอง
	3.3 การสร้างสัญญาณรบกวนจากเครื่องกำเนิดสัญญาณ
	3.4 สรุปรูปแบบของการทดลอง
	3.5 อุปกรณ์การทดลอง

	บทที่ 4 ผลการทดลอง
	บทที่ 5 สรุปผลการทดลอง
	5.1 สรุปผลการทดลอง
	5.2 ข้อเสนอแนะ

	เอกสารอ้างอิง
	ประวัติผู้วิจัย

