

## 201516

งานวิจัยนี้นำเสนอวิธีการตรวจวัดจำนวนเซลล์ด้วยการวัดการเปลี่ยนแปลงความถี่เรโซแนนซ์ของตัวตรวจวัดแบบ QCM ( Quartz Crystal Microbalance ) โดยได้ประดิษฐ์ระบบวัดจำนวนเซลล์ที่สามารถวัดในเวลาจริงได้พร้อมกัน 4 ช่อง และสามารถควบคุมอุณหภูมิได้ในช่วง 32-42 °C จากการได้ศึกษาเสถียรภาพของระบบวัดพบว่า QCM มีสัมประสิทธิ์การเปลี่ยนแปลงความถี่เรโซแนนซ์ต่ออุณหภูมิในสารละลายเลี้ยงเซลล์ และในอากาศมีค่าใกล้เคียงกันคือ -11 Hz/°C และ -9Hz/°C นอกจากนี้พบว่าความถี่เรโซแนนซ์มีการเปลี่ยนแปลงเป็นรูปคล้ายไชน์ตามการระเหยของน้ำ เมื่อควบคุมอุณหภูมิ และการระเหยของน้ำที่ส่งผลต่อการเปลี่ยนแปลงความถี่เรโซแนนซ์แล้วพบว่าระบบวัดที่พัฒนาขึ้นมีความเสถียรภาพในการเปลี่ยนแปลงความถี่ในขณะใช้งานในของเหลวเท่ากับ  $\pm 5\text{Hz}/\text{Hour}$

เมื่อนำ QCM มาตรวจวัดจำนวนเซลล์เม็ดโครฟ่า (ATCC Number TIB-71;Raw 246.7) พบว่า QCM มีการเปลี่ยนแปลงความถี่เรโซแนนซ์เป็นบวก และมีค่าสัมพันธ์เป็นเชิงเส้นกับจำนวนเซลล์ในแต่ละการทดลอง โดยให้ผลตอบสนองในช่วง  $+50-200 \frac{\text{Hz}}{10^6 \text{ cells} / \text{ml}}$  ผลการทดลองที่ได้มาให้ผลที่ต่างจากการคิดโดยใช้สมการของ Sauerbrey และ Kanazawa ที่มีความสัมพันธ์เชิงลบ ได้ตั้งสมมติฐานการเปลี่ยนแปลงความถี่เรโซแนนซ์ในเชิงบวกนี้ว่าเกิดจากการเพิ่มความเครียดที่ผิวของ QCM เนื่องจากน้ำหนักของเซลล์ และการที่เซลล์มีลักษณะไม่ตรงตามเงื่อนไขของสมการของ Sauerbrey หรือ Kanazawa กล่าวคือ เซลล์มีลักษณะยืดหยุ่น ไม่เป็นพิล์มนบาง รวมทั้งลงเกาะบนผิวทองได้ไม่ดี ซึ่งจากเหตุผลที่กล่าวมานี้ส่งผลให้ความถี่เรโซแนนซ์มีค่าเพิ่มขึ้นโดยได้พบปรากฏการณ์เช่นนี้ในกรณีของผงอะลูมินาเซ่นกัน

## 201516

This thesis presents a method for the detection of cell quantity via frequency change of QCM sensor. Four channels continuous and real time cell monitoring system with temperature controller in the range of 32-42 °C has been designed and constructed. It was found that the temperature coefficient of QCM in media solution and air were  $-11 \text{ Hz/}^{\circ}\text{C}$  and  $-9\text{Hz/}^{\circ}\text{C}$ , respectively. The frequency change of QCM was also found to be depended on water evaporation. By controlling the temperature and water evaporation, the stability of the system of  $\pm 5\text{Hz}/\text{hour}$  was achieved.

Positive linear relations between frequency change and numbers of macrophage cell (ATCC Number TIB-71; Raw 246.7) was observed with sensitivity of  $+50-200 \frac{\text{Hz}}{10^6 \text{ cells} / \text{ml}}$ . These results did not follow Sauerbrey and Kanazawa equation which have negative correlation. It was assumed that the increase of the resonance frequency due to the cell adhesion was affected by stress on QCM's surface, since the characteristic of cell was not the rigid mass or thin film and the attachment on the QCM's surface was weak. This phenomenon was also observed in the case of alumina powder on QCM.