

วิทยานิพนธ์ฉบับนี้มีวัตถุประสงค์เพื่อศึกษาสมบัติเชิงกลที่ขึ้นอยู่กับเวลาและอุณหภูมิของยางเติมผงคาร์บอนเต็ม โดยทำการทดลองให้รับภาระดึงในแกนเดียว ภาระพลวัตแบบบ่วงรอบและการการคลายความเค้นที่อุณหภูมิแตกต่างกันระหว่าง 25 ถึง 100 องศาเซลเซียส พบว่า พฤติกรรมเชิงกลที่อุณหภูมิแตกต่างกัน เมื่ออุณหภูมิสูงขึ้นความแข็งแรงของวัสดุจะลดลง วงรอบการสูญเสียก็จะสูญเสียน้อยลงและอัตราการคลายความเค้นจะเร็วขึ้น แต่ที่อุณหภูมิแตกต่างกันระหว่าง 80 ถึง 100 องศาเซลเซียส พฤติกรรมเชิงกลจะมีการเปลี่ยนแปลงน้อยมาก การศึกษานี้ได้พิจารณาแบบจำลองวิสโคไฮเปอร์อิลาสติกที่เกิดการเปลี่ยนแปลงรูปร่างในแนวแกน ซึ่งพฤติกรรมไฮเปอร์อิลาสติกแทนด้วยแบบจำลองฟังก์ชันพลังงานความเครียดของโพลิโนเมียล อันดับ 2 พฤติกรรมวิสโคอิลาสติกที่ขึ้นกับเวลาและฟังก์ชันการคลายตัวแทนด้วยอนุกรมโปรนี ซึ่งการขึ้นกับอุณหภูมิของพฤติกรรมเชิงกลอธิบายโดยใช้ฟังก์ชันเลื่อนเวลาของอุณหภูมิจากทฤษฎีของวิลเลียม-แลนเดล-เฟอร์รี่ ทั้งนี้ยังได้นำค่าพารามิเตอร์ของแบบจำลองวิสโคไฮเปอร์อิลาสติกขึ้นต้นมาไว้เคราะห์โดยใช้โปรแกรมABAQUSเป็นโปรแกรมไฟไฟน์ติลิเมนต์ โดยแบบจำลองประสบผลสำเร็จในการจำลองการดึงในแกนและการคลายความเค้นที่อุณหภูมิแตกต่างกัน ผลของแบบจำลองพลวัตแบบบ่วงรอบให้ผลการสูญเสียที่น้อยกว่าการทดลองและแบบจำลองไฟไฟน์ติลิเมนต์ยังรองเท่านเครื่องที่กำหนดให้วัสดุเป็นแบบวิสโคไฮเปอร์อิลาสติก เพื่อทำนายพฤติกรรมการคีบที่ขึ้นกับอุณหภูมิที่แตกต่างกัน

Abstract

The aim of this thesis is to study the time and temperature dependent of mechanical property of carbon black filled natural rubber. In this work, the time and temperature dependent behaviour has been studied experimentally by means of uniaxial tensile tests, dynamic cyclic loading and stress relaxation tests at various temperatures between 25 to 100 °C. It was found that the mechanical behaviour varies with temperature. As the temperature increases, the strength decreases, the hysteresis loop becomes smaller and the rate of the relaxation process increases. However, the differences in the mechanical behaviour between the temperature of 80°C and 100°C is negligible. A visco-hyperelastic material model was employed aiming to capture the uniaxial large deformation, time and temperature dependent response. The hyperelastic response was modeled using the strain energy function which is expressed by a polynomial series N=2. The time dependent response was assumed linear viscoelastic and the relaxation function was represented by a Prony series. The temperature dependent was captured by the temperature-time shift function of Williams-Landel-Ferry. The visco-hyperelastic material model was incorporated into a finite element package ABAQUS and was used to simulate the responses obtained experimentally. The model has some success in modelling the uniaxial tensile response and stress relaxation at different temperatures. The model can depict the hysteresis response but in much lesser extent than that observed experimentally. A finite element model with the mentioned visco-hyperelastic material model incorporated of an engine mount was created for predicting temperature dependent creep response.