

ในผู้ป่วย MODY คนไทยพบความผิดปกติของยีน *HNF-1α* ที่มีการเพิ่ม 14 นิวคลีโอไทด์ทำให้เกิดการหยุดการสร้างโปรตีนของ *HNF-1α* เร็วกว่าปกติ ทำให้ได้ *HNF-1α* โปรตีนที่มีกรดอะมิโนขาดหายไปจำนวน 76 กรดอะมิโน เมื่อสังเคราะห์ยีน *HNF-1α* ที่ปกติและที่มีมิวเตชั่นในหลอดทดลองและในเซลล์เพาะเลี้ยงพบ *HNF-1α* โปรตีนขาดเดียวกันกับที่คาดการณ์ไว้ เมื่อทดสอบความสามารถในการจับของโปรตีนต่อสาย DNA- พบร่วงทั้ง *HNF-1α* โปรตีนที่ปกติและที่มีมิวเตชั่นสามารถจับกับ promoter ของยีน *GLUT2* ของคนได้เช่นเดียวกัน แต่ความสามารถในการกระตุ้น promoter ของยีน *GLUT2* และ *L-PK* ของคนในเซลล์เพาะเลี้ยงให้ผลที่ต่างกัน โดย *HNF-1α* โปรตีนที่มีมิวเตชั่นให้ผลลดลงประมาณ 55-60 เปอร์เซ็นต์เมื่อเทียบกับ *HNF-1α* โปรตีนที่ปกติ เห็นได้ว่า *HNF-1α* โปรตีนที่มีมิวเตชั่นสามารถในการกระตุ้น promoter ของยีน เป้าหมายได้ลดลง โดยยืนหล่นนี้เกี่ยวข้องกับการทำงานของเซลล์ในตับอ่อน ซึ่งน่าจะเป็นสาเหตุของการทำงานที่ผิดปกติของเซลล์ตับอ่อนในผู้ป่วย MODY คนไทยที่มีความผิดปกติของยีนแบบนี้

## ABSTRACT

A novel frameshift mutation attributable to 14-nucleotide insertion in *hepatocyte nuclear factor-1 α* (*HNF-1 α*) encoding a truncated *HNF-1 α* (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant *HNF-1 α* proteins were expressed by *in vitro* transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant *HNF-1α* could similarly bind to human glucose-transporter 2 (*GLUT2*) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant *HNF-1α* on human *GLUT2* and rat *L-type pyruvate kinase (L-PK)* promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated *HNF-1 α* (G554fsX556) on the transactivation of its target-gene promoters would account for the β-cell dysfunction associated with the pathogenesis of MODY.