

การรวมกลุ่มของคอลลอยด์สำหรับอนุภาค โพลีสไตรีนสัมฐานกลมในแบบ 2 มิติ นั้นได้รับอิทธิพลจากแรงกระทำ (Contact Force) เกิดระหว่างพื้นผิวที่เป็นอากาศและของเหลว โดยใช้การสร้างแบบจำลองทางคอมพิวเตอร์ด้วยวิธีดิสก์คริทอัลเมท (Discrete Element Method : DEM) อันสอดคล้องกับการทดลอง ซึ่งแบบจำลองนี้พิจารณาแรงกระทำทางกลศาสตร์ระหว่างอนุภาคในระบบคอลลอยด์คือ Spring and Dashpot Force และแรงแวนเดอวัลล์ (van der Waals Force) ในงานวิจัยนี้ได้ศึกษาการสร้างแบบจำลองทางคอมพิวเตอร์ด้วยวิธี DEM และเปรียบเทียบผลการทดลองกับการทดลองจริงโดยการใช้กล้องจุลทรรศน์ (Optical Microscopy) พบว่าลักษณะการเกิดกลุ่มมวลรวมสอดคล้องกัน แสดงให้เห็นว่าพฤติกรรมการรวมกลุ่มของคอลลอยด์นั้นขึ้นอยู่กับแรงกระทำอันเนื่องจาก Long-ranged (Spring and Dashpot) และ Short-ranged Interaction Forces ของ (แรงแวนเดอวัลล์) ดังนั้นการสร้างแบบจำลองด้วยวิธี DEM จึงสามารถอธิบายพฤติกรรมการเกิดกลุ่มมวลรวมของคอลลอยด์แบบ 2 มิติได้ อีกทั้งวิธีทางกลศาสตร์สถิติ (Statistical Mechanics) โดยการหาความสัมพันธ์ของ Density Correlation Function เพื่อนำมาอธิบายระบบที่มีพฤติกรรมซับซ้อน เช่น วัสดุแบบเกรน (Granular Materials) และระบบคอลลอยด์ได้ ซึ่งความสัมพันธ์ระหว่างคุณสมบัติระดับมหภาค (Macroscopic Properties) ของระบบที่ศึกษาและคุณสมบัติทางกลศาสตร์ (Mechanics Properties) ของอนุภาคในระดับจุลภาค (Microscopic) มีลักษณะใกล้เคียง นั้นหมายความว่า พฤติกรรมของอนุภาคในระดับจุลภาคที่ได้จากแบบจำลองทางคอมพิวเตอร์ สามารถนำมาคาดคะเนพฤติกรรมของอนุภาคในระดับมหภาคได้ นอกจากนั้นแล้วความสัมพันธ์ Density Correlation Function ยังสามารถบ่งบอกถึงสถานะของระบบคอลลอยด์ได้

The formation of two-dimensional colloidal aggregates of polystyrene microspheres formed at the air-liquid interface was influenced by the contact force. This behavior could be observed and studied using the Discrete Element Method (DEM) computer simulation. The interaction mechanisms (Contact Forces) between particles in the colloidal system were considered as a combination of spring and dashpot force and van der Waals force. The results from simulation were almost similar to the ones obtained from the experiments using the optical microscopy. The main focus of this study was to introduce a computer simulation method (DEM), the interaction forces between particles and the result comparison between the computer simulation and the experimental work. This study showed that the behavior of the colloidal aggregates depended on the long-ranged (Spring and Dashpot) and the short-ranged interaction force (van der Waals). In addition, the behavior shown in both computer simulation and the experiment were in good agreement. Therefore, this computer simulation method can mimic the behavior of colloidal aggregates forming as a monolayer at the air-liquid interface. Moreover, the density correlation function (Pair Distribution Function) by using the statistical mechanics can be used to describe the system which is very complicated such as granular materials and colloidal systems. This function correlates the properties of macroscopic system to the known mechanic properties of microscopic system and shows that behaviors from both systems are similar. This indicates that, the behaviors of microscopic system obtained from the computer simulation can predict the behaviors of macroscopic system. Furthermore, the density correlation function can identify the state of matter in the system.