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Abstract

Two symmetrical distributed test statistics, called Z_and Z are proposed and their goodness-of-fit tests are

compared with other available five test statistics: Wald-t, Score test, Z e Z, and Z , for overdispersion in Poisson

regression model versus generalized Poisson model. Five thousand data sets in each condition of overdispersion

parameters and sample sizes are simulated to perform the assessment of the models’ fits using those statistics, concerning

the coverage probability and power of tests. Results show that the Z_ test performs closely as good a Z and Z tests
m B

but it tend to be better than the others when the sample size is large. Even if the Z | test has the largest power;

however, in consideration for coverage probability and power of tests, the Z_ test probably be more reliable. The Z

test statistic is interesting not only in its simplest form, with the reasonable coverage probability and power but also

in its robust property of using median that needs fewer assumptions for its parent distribution.
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Introduction

Statistical modeling is a well known process for
analyzing the count data. In the case of Poisson response
with at least one continuous explanatory variable, Poisson
regression modeling is often fitted in the analysis as a
basis for categorical data analysis (Frome et al., 1973;
Frome, 1983; Yamjaroenkit and Pongsapukdee, 2012;
Pongsapukdee, 2012; Agresti, 2013). In theory, data of
the Poisson distribution should have its mean equal to its
variance. However, in practice, the corresponding mean
or observed variance of the data seldom meets this
assumption and tends to be larger than the corresponding
mean. Thus, count data might display substantial extra-
Poisson variation (or overdispersion) and that the
appropriate statistical modeling, tackling of this problem
must be concerned in advance.

In the case of Poisson response with at least one
continuous explanatory variable, Poisson regression
modeling procedure is commonly used in the analysis of
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data. For Poisson model, data arising from groups or
individuals are often statistically dependent within the
group, therefore, the observed variance of data may not
equal to the corresponding mean. The excess variability
is called overdispersion. In this problem, the ordinary
Poisson regression modeling is not adequate in analysis
of data; however, generalized Poisson models (Consul
and Jain, 1973), which is using the negative binomial
distribution instead of the Poisson distribution to account
for the overdispersion, will be more appropriated. Several
test statistics and methods have been suggested for dealing
with such problem in order to determine the overdispersion
of data; for example, VAVald-t test (Wang and Famoye,
1997), Score test, S(B)(Yang, et al., 2009), Z test
(Bohning, 1994), and Z; and Zg tests (Yamjaroenkit and
Pongsapukdee, 2012).

Moreover, Lawless, 1978; Dean and Lawless, 1989;
and Dean, 1992 have noted that in certain circumstances
and problems, the asymptotic distributions used with the
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usual tests such as a likelihood ratio test may provide
misleading results, as they tend to underestimate the
evidence against the base model. Statistical models for
describing and analyzing the over dispersed Poisson data
and Poisson rates usually are generalized Poisson
regression models (Consul and Jain, 1973; Consul, 1989;
Famoye, 1997) which includes the Poisson regression
model (Cameron and Trivedi, 1998) as nested or a special
case model. Therefore, testing for extra-Poisson variation
can be applied and performed by fitting a longer model
or more comprehensive model such as a generalized
Poisson regression model (for overdispersion case) versus
fitting a shorter model such that a Poisson regression
model. This is corresponding to the test for a goodness-
of-fit for a reduction to the simple or shorter model, using
a test for overdispersion. In other words, if the null model
is not rejected or no overdispersion is significance, a
Poisson regression model is adequate. However, if the
null model is rejected, the overdispersion problem is
evidence, thus a generalized Poisson regression model is
a better fit model for analyzing the data and handle the
problem in this case.

In this article we propose two newly developed test
statistics, Z_and Z | of testing for overdispersion of
count data and empirically investigate the results under
the null Poisson regression model versus the alternative
generalized Poisson regression model. If no evidence of
overdispersion occurs, Poisson regression model is good
fitted. But if overdispersion occurs, generalized Poisson
regression model is more appropriated. For considering
the efficiency of the test statistics, the study based on the
power of the tests and the coverage probabilities are
compared with those from other tests: Wald-t test, Score
test, Z, testZ, and Z tests. The response data are
simulated under the generalized Poisson regression model
with the single explanatory variable generated from
continuous Uniform (0, 1). Data analyses using the
rewritten macro run with SAS® enterprise version 5.1 by
performing 5,000 data sets in each condition of the
dispersion parameters and the sample sizes of 30, 50, 100,
200, and 500, respectively.

Models and test statistics

Generalized Linear Models and Generalized
Poisson regression models

Poisson regression models and Generalized Poisson
regression models are widely used in many areas of
scientific applications and social science researches.
These models are a branch of the Generalized Linear
Models or GLMs (Nelder and Wedderburn, 1972) which
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concerns an exponential family distributed response,
systematic linear combination, and link functions. The
log link function and the categorical response variable of
interest make the Poisson regression and the generalized
Poisson regression models distinct from a linear regression
model which depends only on a normal distributed
response. These two GLMs models can also be applied
by extending to correlated data sets using Generalized
Linear Mixed Models or GLMMs including some
nonlinear modeling and random effects modeling
(McCulloch and Searle, 2001).

The usual Poisson loglinear model (Agresti, 2013),
with the positive mean of Poisson distribution and an
explanatory variable X, has the form: logu(x) = o + fx,
where ¢, f are model parameters. This model satisfies the
exponential relationship u(x) = exp(a + fx) and a 1-unit
increase in X, has a multiplicative impact of ¢#. The mean
at X, + 1 equals the mean at X, multiplied by ¢”. The log
mean is the natural parameter for the Poisson distribution.
When at least one of the explanatory variable, X’s, is
continuous variable, the above model is often called “a
Poisson regression model”. In addition, when events of
a certain type occur over time, space, or some other index
of size, it is usually more relevant to model the rate at
which they occur than modeling thecount data and the
above model is often modified to Poisson regression for
rates (Agresti, 2013). For more complicated Poisson
loglinear modeling such that generalized loglinear models
(Salee and Pongsapukdee, 2013) and the generalized
Poisson regression models, often we need to check for
the overdispersion problems (Agresti, 2013).

In contrast, when the overdispersion situation is
common in the modeling of counts, and the variance is
larger than its mean. The generalized Poisson regression
model (Consul and Jain, 1973), with taking the negative
binomial distribution instead of the Poisson distribution
to account for the overdispersion, is the better fit model.
Therefore the generalized Poisson model is often
considered to use in most modeling of overdispersion
situation compared with the Poisson regression models
after testing that it is a better alternative by using several
test statistics (Yang, et al., 2009; Pongsapukdee, 2012;
Agresti, 2013).

Test statistics

Seven test statistics consist of Wald-t test (Wang and
Famoye, 1997), Score test, S(ﬁ) (Yang,et al., 2009), Z,
test (Bohning,1994), Z; and Z tests (Yamjaroenkit &
Pongsapukdee, 2012), and the two newly proposed test
statistics, Z_testand the Z testare all considered. All
of which the formulae are stated in the following (1) - (7).
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Five former statistics
The Wald-t (cited in Yang, et al., 2009; Wang and
Famoye, 1997) has the form

P—9 '
SE (¢)

t= &)

where, Pis the estimated value of the dispersion parameter,
@, SE(@) is the standard error of @.

The Score test or S([?) (Yang, et al., 2009) has the form
in (2).

S(,B) = wfzg/}lz _ i_il((yi_:&i)z_yi)

where, 1 is the estimated value of'y, from the corresponding
model.

)

Following the test statistic of Bohning (Bohning, 1994)
under the null hypothesis is true: H: ¢ = 0, Z has the
form in (3).

where, $?is the sample variance, and Y is from the sample
mean of Poisson observed counts.

The test for dispersion parameter ¢ =0 is corresponding
to the Poisson model in null hypothesis versus the
alternative hypothesis, H: ¢ > 0 which is in contrast
corresponding to the generalized Poisson regression
model.

Extending the Béhning’s statistic by using the Y from
its predicted mean of the fitting generalized Poisson
regression model under study, that is 4, we obtain the
estimated variance, S°, which can be rewritten in the form
of =4 (1 v )Z, the estimated variance of the generalized
Poisson regression model from sample data. Hence, the
test statistic, Z;, has the form in (4).

3

Z- =
“ 2

- ”2_1 ((1+¢;ﬁ)2 —1)

“

where, is the dispersion parameter, 2 denotes the predicted
mean of the generalized Poisson regression model from
sample data, and @ is the estimated value of the dispersion
parameter from sample data. The resulting plots of the Z;
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distribution obtained from simulation studies indicate that
the test statistic Z; has approximately asymptotic standard
normal (Yamjaroenkit and Pongsapukdee, 2012;
Yamjaroenkit, 2012). An alternative to Z; called Z;using
Y or the sample mean of the response variable instead of
the /i in the equation (4) we obtain another test statistic
in (5).

Z= ”21 ((1+¢317)2 —1) )
where, Y denotes the sample mean of the response variable
Y, and @ is the estimated value of the dispersion parameter
from sample data. The resulting plot of the distribution
of Z  also has approximately asymptotic standard normal
(Yamjaroenkit and Pongsapukdee, 2012).

Two proposed statistics

In this article we propose two new test statistics, called
Z testand Z, test, of which the forms are similar to
(5) but with new corresponding estimators and are stated
in (6) — (7), respectively.

n-—1
median — 5

((1+(pA)2 = 1) (6)

where, A denotes the sample median of the response
variable Y,

@ denotes the estimated value of the dispersion parameter.

Z) New ~ 7 A )
where, A denotes the sample median of the response
variable Y, and S$? denotes the sample variance.

Simulation and statistical analyses
The response Y data are generated from the Poisson
model, log p =2 + 0.5x, corresponding with p = exp(2 +
0.5x) and that the generalized Poisson distributed mean
(H’;“ . Whereas, the explanatory variable is generated
from continuous U(0, 1) for each condition of sample
sizes (n = 30, 50, 100, and 200), and the corresponding
overdispersion parameters (¢=0, 0.015, 0.02, 0.025, 0.03,
0.035, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20). Each
data set is simulated and processed for each condition of
each Poisson regression probability model ( ¢ = 0) and
each generalized Poisson regression probability model
(9> 0). The hypotheses model is H :¢ = 0, which the case
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Figure 5 Power plots for overdispersion among seven tests for n=500
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of no overdispersion situation is or the Poisson regression
model is true, versus H :¢> 0, which is the case of
overdispersion situation or the generalized Poisson model
is true, and then from testing, H, should be accepted. The
corresponding critical regions are Z = 1.645,7, =-1.645.
In this analysis, the coverage probability and the power
of testsof the statistics: the Wald-t, the Score testor S@,
the Zﬁ and Z, the Z , and two proposed test statistics, Z
testand Z |  are all calculated and investigated through
the statistical modeling process. Simulations, using the
authors’ rewritten macro run with SAS® enterprise version
5.1, were processed repeatedly for 5,000 sets in each
condition of sample sizes and overdispersion parameters.

Results

The results for the coverage probability (P= 0) show
that the Score test seems to be appropriate in every sample
size. However, this score statistic still involves some
outliers and that its power of the tests tends to have less
power than that of the Wald-t test; especially, when sample
size is large (Yamjaroenkit and Pongsapukdee, 2012).
Similarly, the Z; and Zg statistics likely dominate all other
statistics (except the score test) in terms of the coverage
probability ((p=0), but for their power of the tests ((P> 0)
these two statistics tend to give smaller power than those
fromZ andZ . Whensample size is large, Z | give
better coverage probability than the Z . When considering
only the power it is clear that Z,  dominate all other
tests (Figures 1-5).

Even if, the statistics, Z and Z , perform similarly
in possessing higher power of the tests (P = 0) than all
the rest but they would still appear to produce too big
coverage probability values for all sample sizes. Therefore,
the Z_testis probably a reasonable statistic, even if when
sample size is small, its coverage probability is still
interesting with its converging to 0.05 and its performance
is much improved not only in term of the coverage
probability but also in term of power of the test, especially
when the sample size is large. Thus, this statistic possesses
the robust property and that its coverage probability which
is approaching the significance level of o = 0.05. Meanwhile,
its power is also approaching 100%, consistently (Figures
1-5).

Furthermore, the plots of the power of the tests
parameters classified by the sample size, the bigger
sample size we use the much more power we obtain;
especially, from those of Z_and Z | tests. Results also
show that when the sample size is increasing the proposed
robust tests, Z_, performs approximately as good as Z;
and Z,but it tend to be better than others. It can be seen
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that the coverage probability and the power from the Z
test are posing most reasonable plots among all tests
(Figures 4-5). Thus, in practice the implementation with
potential safety test, we recommend to use the Z_ test,
particularly for the large sample size. Hence, when
concerning both power and the coverage probability, the
Z_ test probably be more preferable due to not only in
testing goodness-of-fit for overdispersion with its
robustness of using median that needs less assumption
about any distribution, but also its simplicity form as well
as it can be applied for both continuous and discrete
explanatory variables as well.

Discussion and conclusion

Two new symmetrical distributed tests called Z and
Z, o are proposed and their goodness-of-fit tests for
overdispersion are competitively investigated. All results
among seven goodness-of-fit test statistics: Wald-t, Score
test, Zﬁ, Zy, Z,, Z_ and Z are compared for
overdispersion tests under the Poisson regression model
versus the generalized Poisson regression model in terms
of the coverage probability (¢= 0) and the power of tests
(¢> 0). It indicates that the test statistics that can provide
both the reasonable coverage probability and the power
of tests probably be Z_test. The Z_ test, even if it cannot
dominate other tests with both the coverage probability
and power of test; however, its power of the test is
approaching to approximately 100 % (or 99.88%) and
exactly 100 % when n=200,¢ =0.06 and 0.07, respectively.
Beside this, Z_test is the simplest statistic and still be
appropriate for both cases of either discrete or
continuousexplanatory variable. Results also indicate that
its power is properly increasing consistently as the sample
size is increased. Then, this test statistic would be used
more safely in testing goodness-of-fit for overdispersion
and should be considered for implementation in practice;
especially for large sample. In future research, it may
further study among the test statistics’ asymptotic
distributions and their relative efficiencies, particularly
with an extension to models which consist of both discrete
and continuous variables that often appear in most
practices.
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