

T 163775

การสร้างสายพันธุ์สัมจีด มนавา และไนวัคัมควอท โดยการใช้สาร โคลชิซีนและไตรฟลูราลิน พนว่าการเปลี่ยนแปลงของ Male cellular cells ปกติในคอกที่ได้รับสารไปเป็น Male bicellular cells และมีขนาดใหญ่กว่า Monocellular cells ปกติ ซึ่งเป็นผลจากโคลชิซีนและไตรฟลูราลิน โดยจำนวนของ Male bicellular cells จะเพิ่มขึ้นตามความเข้มข้นของสารทั้งสองชนิดที่ให้ การเกิด Male bicellular cells ในคอกที่ได้รับสาร Colchicine 1.48 เปอร์เซ็นต์และคอกที่ได้รับสาร Trifluralin 1.58 เปอร์เซ็นต์ ส่วนคอกของเต่าละพืชที่ได้รับสาร Colchicine ในมนava มีการเกิด Male bicellular cells มากที่สุดคือ 1.64 เปอร์เซ็นต์ รองลงมาคือ กั้นควอท และสัมจีด (1.43 และ 1.35 เปอร์เซ็นต์) ตามลำดับ ส่วนคอกที่ได้รับสาร Trifluralin มีการเกิด Male bicellular cells ในมนavaมากที่สุด 1.85 เปอร์เซ็นต์ รองลงมาคือสัมจีด และ ไนวัคัมควอท (1.54 และ 1.39 เปอร์เซ็นต์) ตามลำดับ แต่การติดผลจะลดลงในทางกลับกัน คอกเพศเมียที่ได้รับสาร โคลชิซีนและไตรฟลูราลินผสมกับเกสรตัวผู้ปกติจะติดผลมากกว่าการใช้เกสรตัวผู้ที่ได้รับสารผสมกับคอกเพศเมีย ปกติทั้ง 3 พืช การติดเมล็ดและจำนวนต้นต่อเมล็ดน้อยกว่าจำนวนเมล็ดและต้นที่เกิดขึ้นตามธรรมชาติ อีกทั้งยังไม่เข้มข้นอยู่กับความเข้มข้นของสารที่ให้ จากการตรวจนับจำนวนโครโนโซนพมนava 1 ต้น และไนวัคัมควอท 1 ต้นที่เป็น $2n=3X=27$ บกเว้นสัมจีด โดยต้นทั้งสอง ได้จากคอกเพศเมียที่ได้รับสาร โคลชิซีนความเข้มข้น 0.08 เปอร์เซ็นต์ ผสมเกสรตัวผู้ปกติ ใบของมนava 3X บันตันตอและบันตันตัวเอง มีจำนวนปากในมากกว่าต้น 2X ปกติ ส่วนขนาดปากใบของมนava 3X ที่อยู่บันตันตอ มีขนาดที่ใหญ่กว่ามนava 3X ที่อยู่บันตันตัวเองและมนava 2X ปกติ แต่จำนวนและขนาดปากใบ ของไนวัคัมควอท 3X ที่อยู่บันตันตอและบันตันตัวเองไม่แตกต่างกับไนวัคัมควอท 2X ปกติ

ABSTRACT

TE 163775

The results of the study showed that changes normally take place in the inflorescence of normal male cellular cells when exposed to chemicals, turning them into male bicellular cells and bigger monocellular cells. This was an effect caused by Colchicine and Trifluralin with an increase in the number of male bicellular cells depending on the concentration of both substances (Colchicine at 1.48% and Trifluralin at 1.58%). As for the inflorescence of the different types of plants that were exposed to Colchicine, lime showed the highest increase in male bicellular cells (1.64%) and this was followed by Kumquat and Calamondin (1.43 and 1.35%, respectively). Similarly for plants that were applied with Trifluralin, lime showed the highest increase at 1.85% followed by Calamondin and Kumquat at 1.54 and 1.39%, respectively. However, fruit bearing was inversely reduced. The female flower that received Colchicine and Trifluralin mixed with stamen was found to bear more fruit than the male flower that received chemical substances mixed with female flower in 3 plants. But seed production and number of plants per seed were much lesser than those in naturally growing plants. Besides, this was also not dependent on the concentration of the substance. Results of the counting of the number of chromosomes showed that one lime tree and one Meiwa Kumquat tree had $2n=3x=27$ although this was not found in Calamondin. Both plants (lime and Kumquat) came from female flowers that received Colchicine (0.08%) mixed with normal male flower of both trees. The size of stomata of lime tree (3x) on the stock and on self-tree was much bigger than in normal lime tree (2x). Likewise, the number of stomata of lime tree (3x) on the stock was more than those in lime tree (3x) on self-tree and on normal lime tree (2x) but the number and the size of Meiwa Kumquat (3x) on self-tree was not significant from the normal Meiwa Kumquat tree (2x).