

งานวิจัยขึ้นนี้มีจุดประสงค์ เพื่อศึกษาถึงอิทธิพลของการควบคุมความชื้นของพลังงานภายในร่างกาย ต่อ สภาพการทำงานของรังไข่ในแม่โคริดนมหลังคลอด โดยใช้โรงเรือนปิดแบบปรับอุณหภูมิ (evaporative cooling system) เป็นโมเดล โดยศึกษาในแม่โคนมพันธุ์แท้ไฮลส์ไตน์ฟรีเซ่น จำนวน 56 ตัว ช่วงการคลอดที่ 1-5 ตั้งแต่ 0-10 สัปดาห์หลังคลอด จากผลการวิเคราะห์荷尔์โมนโปรเจสเตอโรนในน้ำนม 2 ครั้ง/สัปดาห์ พบว่า 42.9% (24/56) ของแม่โคราทั้งหมดมีการทำงานของรังไข่ปกติ ขณะที่ 57.1% (32/56) มีการทำงานของรังไข่ผิดปกติ โดยภาวะผิดปกติของรังไข่ที่พบ จำแนกย่อยออกเป็น 1) การตกไข่ล่าช้า 53.1% (17/32) 2) การไม่ตกไข่ 21.9% (7/32) 3) การค้างของครรภ์ปั๊สลูเทียม 15.6% (5/32) และ 4) รังไข่หยุดทำงาน 9.4% (3/32) ตามลำดับ และจากการวิเคราะห์ทางสถิติ พบว่าแม่โคราช่วงการคลอดที่ 1 มีแนวโน้มเกิดการตกไข่ล่าช้าและ/หรือการไม่ตกไข่ สูงกว่าแม่โคราช่วงการคลอดที่ 2 ($P = 0.08$) และที่ ≥ 3 ($P = 0.06$)

ขณะที่ปริมาณน้ำนมรายวันของแม่โคราช่วงการคลอดที่ 1 แตกต่างจากช่วงการคลอดที่ 2 และ ≥ 3 อย่างมีนัยสำคัญ ($P < 0.001$) แต่องค์ประกอบบนน้ำนมนั้น ไม่มีความแตกต่างกันระหว่างกลุ่มแม่โคราทางสถิติ ($P > 0.05$) น้ำหนักตัวและคะแนนความสมบูรณ์ของร่างกาย พบว่ามีค่าลดลงอย่างมากในช่วง 0-4 สัปดาห์หลังคลอด ($P < 0.001$) และมีแนวโน้มแตกต่างกันระหว่างแม่โคราที่มีการทำงานของรังไข่ปกติและผิดปกติ ($P = 0.08$) ขณะที่ความเข้มข้นของสารเบต้า-ไฮดรอกซีบิวทิเรโนในแม่โคราที่มีภาวะผิดปกติของรังไข่หลังคลอด สูงกว่าในแม่โคราที่มีการทำงานของรังไข่หลังคลอดปกติอย่างมีนัยสำคัญ ($P < 0.01$) ส่วนความเข้มข้นของกรดไขมัน ชนิด non-esterified นั้น ไม่มีความแตกต่างระหว่างกลุ่ม ($P > 0.05$) และจากผลการประเมินค่าพารามิเตอร์ด้านการสืบพันธุ์ของแม่โคราหลังคลอด พบว่าโดยรวมมีประสิทธิภาพต่ำ ทั้งนี้แม่โคราที่มีการทำงานของรังไข่หลังคลอดปกติมีแนวโน้มให้อัตราการตั้งท้องที่ 150 วันหลังคลอด สูงกว่าแม่โคราที่มีการทำงานของรังไข่ผิดปกติหลังคลอด ($P = 0.07$)

ดังนั้นจากการศึกษาครั้งนี้สรุปได้ว่าแม่โคริดนม พันธุ์แท้ไฮลส์ไตน์ฟรีเซ่น ที่เลี้ยงอยู่ในโรงเรือนปิดแบบปรับอุณหภูมิ ยังคงเกิดภาวะการขาดสมดุลของพลังงานในร่างกาย ซึ่งเป็นผลต่อเนื่องทำให้มีการเพิ่มสูงขึ้นของภาวะความผิดปกติของรังไข่หลังคลอด และการลดลงของประสิทธิภาพด้านการสืบพันธุ์ระดับผู้ง โดยแม่โคนมที่มีการทำงานของรังไข่ปกตินั้นมีแนวโน้มให้อัตราการตั้งท้องที่ 150 วันหลังคลอดสูงกว่าแม่โคราที่มีการทำงานของรังไข่ผิดปกติ

The present study was aimed to investigate the influence of energy balance on postpartum ovarian resumption in lactating cows by use of evaporative cooling system as a model. Purebred Holstein Friesian cows (N=56) were randomly selected and studied from 0-10 weeks postpartum. Based on twice weekly milk-progesterone analysis, 42.9% (24/56) of the cows showed normal ovarian resumption (Group 1), while 57.1% (32/56) had abnormal ovarian resumption (Group 2). The abnormal ovarian functions were further categorized as followed; 1) delayed first ovulation 53.1% (17/32), 2) anovulation 21.9% (7/32), 3) persistent corpus luteum 15.6% (5/32) and 4) cessation of ovarian activity 9.4% (3/32), respectively. From statistical analysis, the cows in parity 1 had a higher tendency of having delayed first ovulation and/or anovulation, comparing to the cows in parity 2 ($P = 0.08$) and the cows in parity ≥ 3 ($P = 0.06$).

Daily milk yields showed some differences among parity 1 and the others ($P < 0.001$), while, milk components were similar among parities and between animal groups ($P > 0.05$). Body weight and body condition scores (BCS) of the cows decreased dramatically during 0-4 weeks postpartum ($P < 0.001$) and a tendency of lower average BCS was recorded in the cows with abnormal ovarian resumption ($P = 0.08$). Serum levels of beta-hydroxybutyrate was significant higher in the cows with abnormal ovarian resumption comparing to the cows with normal ovarian resumption ($P < 0.01$), whereas, the levels of non-esterified fatty acids were not statistically different among animal groups ($P > 0.05$). Reproductive performances of the cows were generally low, however, a tendency of higher pregnancy rates were found in the cows with normal ovarian resumption, comparing to the cows with abnormal ovarian resumption ($P = 0.07$).

In conclusion, the purebred Holstein Friesian cows, rearing under evaporative cooling system, had shown some degrees of negative energy balance, which resulted in an abnormal profile of postpartum ovarian resumption and subsequently led to reduced reproductive performance in the herd level. Nevertheless, the pregnancy rates at 150 days postpartum tended to be higher in the cows with normal ovarian resumption.