

งานวิจัยนี้ได้คัดแยกแบคทีเรียจากน้ำหมักชีวภาพ เปลือกกรุ้ง และกล้วยไม้สกุลหวาย และแอคติโนมัยซ์จากดินในสวนกล้วยไม้ และนำมาจุลินทรีย์ทั้งหมด 490 ไอโซเลทมาคัดเลือกสายพันธุ์มีความสามารถในการยับยั้งการเจริญของ *Colletotrichum gloeosporioides* และ *Sclerotium rolfsii* จากผลการศึกษาพบว่า SSE4, EMC4 และ SRA14 สามารถยับยั้งการเจริญของ *C. gloeosporioides* ได้ดี ส่วน NBR41, SSE4, EMC4 และ SRA14 ยับยั้งการเจริญของ *S. rolfsii* ได้ดี ซึ่งลำดับเบส 16S rDNA ของ NBR41, SSE4, EMC4 และ SRA14 มีความคล้ายคลึงกับ *Pseudomonas cinnamophila*, *Bacillus subtilis*, *B. subtilis* และ *Streptomyces hygroscopicus* ตามลำดับ เมื่อนำ Culture filtrate ของ SSE4, EMC4 และ SRA14 ที่เก็บในระยะ Exponential และ Stationary phase ไปทดสอบประสิทธิภาพการยับยั้งการเจริญแบบ Radial growth ของรา พบร้า Culture filtrates ที่เก็บจากทั้งสองระยะมีประสิทธิภาพในการยับยั้งการเจริญของราทั้งสองสายพันธุ์ได้ดี รวมทั้ง Culture filtrate ของ NBR41 ยังยับยั้งการเจริญของ *S. rolfsii* ได้ดีเช่นเดียวกัน และพบว่าเปอร์เซ็นต์การยับยั้งการเจริญของราที่เพาะเลี้ยงในอาหารเลี้ยงเชื้อแบ็คและเหลวที่มี Stationary culture filtrates มีค่าสูงกว่าเปอร์เซ็นต์การยับยั้งการเจริญของราจาก Exponential culture filtrate นอกจากนี้ยังพบว่า Exponential และ Stationary culture filtrate ของจุลินทรีย์ปฏิปักษ์ทั้ง 4 สายพันธุ์มีประสิทธิภาพในการยับยั้งการเจริญของ *C. gloeosporioides* ได้ดีกว่า *S. rolfsii* และพบว่า Culture filtrates มีผลต่อลักษณะทางสัณฐานวิทยาของเส้นใยรา โดยทำให้เส้นใยราเกิดการบวม มีการรวมตัวของไซโตพลาสซึม และรูปร่างบิดเบี้ยว รวมทั้งเกิดการแตกหัก นอกจากนี้ยังพบว่าจุลินทรีย์ปฏิปักษ์แต่ละสายพันธุ์สร้างเอนไซม์ค็อติเนสได้สูงสุดในระยะ Exponential phase โดย *P. cinnamophila* NBR41 สร้างเอนไซม์ค็อติเนสได้สูงที่สุดเมื่อเทียบกับจุลินทรีย์ปฏิปักษ์สายพันธุ์อื่น และพบว่าเปอร์เซ็นต์การยับยั้งการเจริญของราของ Exponential culture filtrate ของ NBR41 และ SRA14 ลดลง เมื่อได้รับความร้อนหรือ Proteinase K ในขณะที่เปอร์เซ็นต์การยับยั้งการเจริญของราของ Stationary culture filtrate ของ NBR41 และ SRA14 รวมทั้ง Exponential และ Stationary culture filtrate ของ SSE4 และ EMC4 ไม่เปลี่ยนแปลง นอกจากนี้ Stationary culture filtrate ของ SSE4 และ SRA14 มีประสิทธิภาพในการป้องกันการเกิดโรคแอนแทรคโนจาก *C. gloeosporioides* ในกล้วยไม้สกุลหวายได้ดีเทียบเท่าการใช้สารเคมีฆ่ารา ซึ่งผลจากการศึกษาครั้งนี้สามารถนำ Stationary culture filtrate จากจุลินทรีย์ปฏิปักษ์ไปประยุกต์ในการป้องกันโรคแอนแทรคโนสหดแทนการใช้สารเคมีฆ่าราในการเพาะปลูกกล้วยไม้สกุลหวายได้

This research was focused on the isolation of bacteria from fermented bioextract, shrimp shell waste and *Dendrobium* orchid and isolation of actinomycetes from soils. A total of 490 microbial strains were assessed for *in vitro* antagonism toward *Colletotrichum gloeosporioides* and *Sclerotium rolfsii*. The potent antagonists against both *C. gloeosporioides* and *S. rolfsii* were selected and designated as SSE4, EMC4 and SRA14. In addition, one antagonist, NBR41, showed strong inhibition to *S. rolfsii*. All potent antagonists namely NBR41, SSE4, EMC4 and SRA14 showed highly similarity of 16SrDNA sequences to *Pseudomonas cinnamophila*, *Bacillus subtilis*, *B. subtilis* and *Streptomyces hygroscopicus*, respectively. Culture filtrates of the SSE4, EMC4 and SRA14 collected from the exponential and stationary phases inhibited the radial growth of both the fungi tested while culture filtrates of the NBR41 inhibited the radial growth of *S. rolfsii*. The percentages of fungal growth inhibition by the stationary culture filtrate of all antagonists were significantly higher than that of exponential culture filtrate. The exponential and stationary culture filtrates inhibited the growth of *C. gloeosporioides* better than that of *S. rolfsii*. Morphological changes such as hyphal swelling, cytoplasm aggregation, abnormal shapes and distortion were observed in fungi grown on PDA amended to the culture filtrates. In addition, all antagonists produced chitinase enzymes during the exponential phase and the highest production was found in *P. cinnamophila* NBR41. However, the percentages of fungal growth inhibition by exponential culture filtrate of NBR41 and SRA14 was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentages of fungal growth inhibition by the stationary culture filtrates of NBR41 and SRA14 as well as the exponential and stationary culture filtrates of SSE4 and EMC4 after treated as above. In vivo biocontrol assay, stationary culture filtrates of SSE4 and SRA14 controlled anthracnose disease caused by *C. gloeosporioides* as effectively as the chemical fungicide (mancozeb) control. These finding suggested that there is good potential for using the stationary culture filtrates of SSE4 and SRA14 as biofungicides to control the anthracnose disease in *Dendrobium* orchid cultivation.