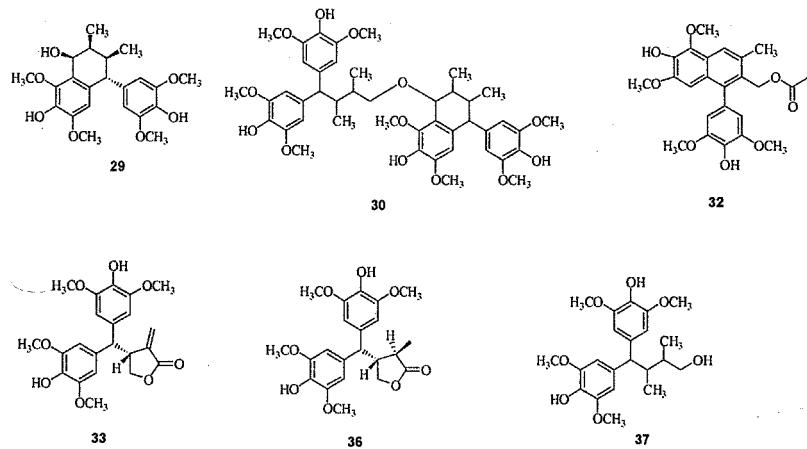
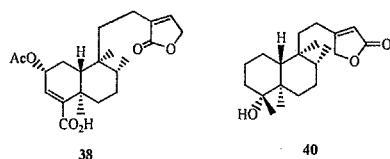

งานวิจัยในโครงการนี้ ได้มีการศึกษาพืช 2 สกุล ได้แก่ *Polyalthia* และ *Phyllanthus* กลุ่มวิจัยได้ทำการสกัดและทดสอบฤทธิ์ต้านการเจริญเติบโตของเซลล์มะเร็ง และต้านเชื้อเอชไอวี-1 ในระดับที่เป็นสารสกัดหลายส่วนแยกย่อย และสารบริสุทธิ์ กลุ่มวิจัยได้เลือกที่วิจัยทางเคมีในชิงลักษณะพืชใน 2 สกุลนี้ จำนวน 5 สปีชีส์ ได้แก่ *Polyalthia crassa* *Phyllanthus acutissima* *Polyalthia glauca* *Polyalthia cinnamomea* และ *Polyalthia sclerophylla*

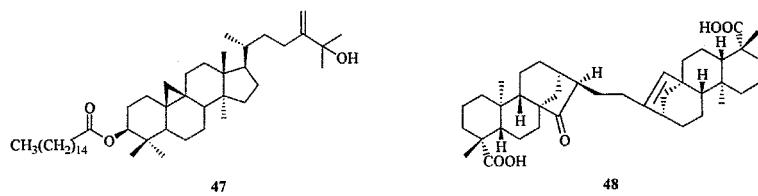
กลุ่มวิจัยสามารถแยกสาร ได้จากต้น *Polyalthia crassa* (วงศ์ Annonaceae) ทั้งหมด 12 เป็นสารใหม่ 5 สาร ได้แก่ crassalactones A-E (8-12) และสารที่มีผู้รายงานมาก่อนอีก 7 สาร พบว่าสารใหม่ 8, 9, 11 และ 13 ออกฤทธิ์ต้านเซลล์มะเร็งในระดับดี แต่สาร 9, 10 รวมทั้งสาร known aristolactam และ goniopyrpyrone แสดงฤทธิ์ทางต้านเชื้อเอชไอวี-1 ในเกณฑ์ที่เข่นกัน ด้วยค่า selectivity index ประมาณ 2.1-5.1.


นักวิจัยได้วิเคราะห์โครงสร้าง โดยวิธีทาง spectroscopy, และ stereochemistry ของสาร 8-11 ได้ด้วยวิธี chemical conversion และ X-ray diffraction แต่ของสาร 12 ยังไม่สามารถพิสูจน์ stereochemistry ได้ ได้ทำการคัดแปลงโครงสร้างของสาร 8 เป็นสาร 13 เพื่อประโยชน์ในการศึกษา stereochemistry ของสาร 8

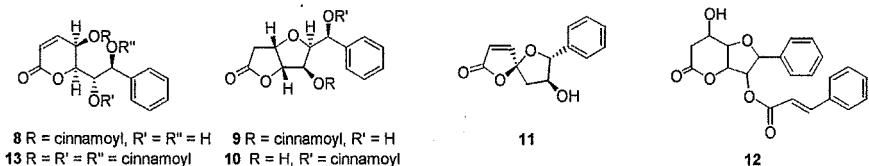
ต่อไปนี้ ตัวการแยกสารจากต้น *Phyllanthus acutissima* ทำให้พบสารใหม่จำนวน 7 สาร ได้แก่ triterpenes 15, 17, 18, 19 และ 21 รวมทั้ง lignans 24 และ 27 นอกจากนี้ยังแยกได้สารที่มีผู้รายงานมาก่อนอีก 5 สาร และของพัฒระหัวง β -sitosterol/stigmasterol และ β -sitosterol β -D-glucopyranoside/stigmasterol β -D-



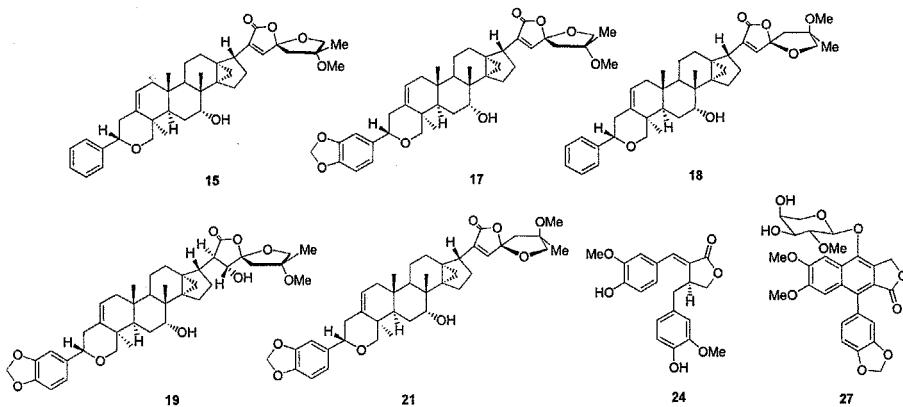
glucopyranoside พบว่าสาร 15, 17, 19 ออกฤทธิ์ต้านเซลล์มะเร็งในระดับดี ตัวสาร 27 นั้นฤทธิ์อยู่ในระดับดีมาก ส่วนฤทธิ์ต้านเอชไอวี-1 นั้น มีอยู่หลายสารที่ออกฤทธิ์ใน anti-syncytium assay แต่ว่าสาร 19 จะให้ค่า selectivity index สูงสุด (IC_{50} 31.6, EC_{50} <3.9 และ $SI >8.1$) สำหรับใน RT-assay ได้พบว่าสาร Taiwanin C ซึ่งเป็นสาร known มี % inhibition ที่ 200 μ g/mL สูงสุดคือเท่ากับ 88.2%


งานที่เกี่ยวข้องกับ *Polyalthia glauca* สามารถแยกสารใหม่ได้ 6 สาร สารใหม่ที่แยกได้ ได้แก่สาร 29, 30, 32, 33, 36 และ 37 รวมกับสารที่มีผู้รายงานมาก่อนอีกหลายสาร แต่ยังไม่สามารถพิสูจน์ absolute configuration ของสาร 30 ได้ สาร 33 และสาร known 2,6-dimethoxybenzoquinone แสดงฤทธิ์ต้านเชลล์ มะเร็งในระดับตี สาร 29 และสาร known 4-acetyl-3,5-dimethoxy-*p*-quinol ออกฤทธิ์ต้านเชื้อเอชไอวี-1 ได้ (selectivity index 3.8 และ 1.9 ตามลำดับ)

งานที่เกี่ยวกับ *Polyalthia cinnamomea* สามารถแยกสารใหม่ได้ 2 สาร ได้แก่สาร 38 และ 40 รวมกับสารที่มีผู้รายงานมาก่อนอีก 2 สาร ปรากฏว่าสารทั้ง 4 ไม่แสดงฤทธิ์ต้านการเจริญเติบโตของเซลล์มะเร็งเลย แต่ออกฤทธิ์ต้านเชื้อเอชไอวีใน anti-syncytium assay ด้วย selectivity index ในช่วง 2.0-3.3 สำหรับสาร 2 α -acetoxyhardwickiic acid ที่เป็นสาร known นั้น พบว่าแสดงฤทธิ์ใน RT-assay ถึง 92.1% inhibition ที่ 200 μ g/ mL

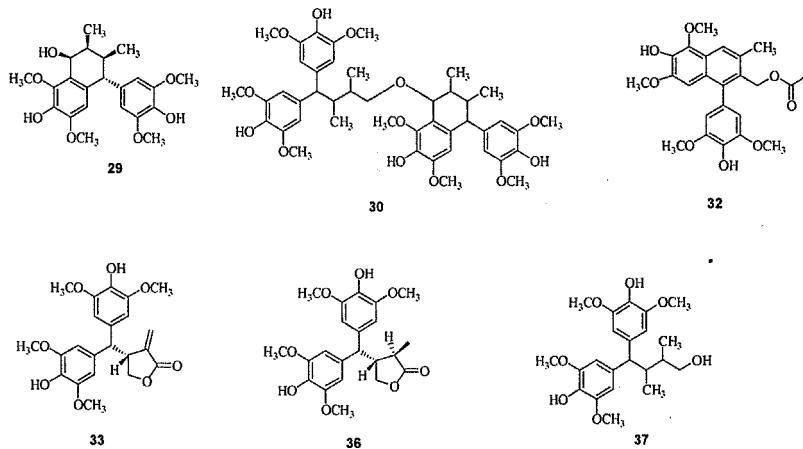

งานที่เกี่ยวกับ *Polyalthia sclerophylla* สามารถแยกสารใหม่ได้ 2 สาร ได้แก่สาร 47 และ 48 รวมกับสารที่มีผู้รายงานมาก่อนอีกหลายสาร สารส่วนใหญ่ไม่ค่อยแสดงฤทธิ์ต้านการเจริญเติบโตของเซลล์มะเร็ง มีเพียง 15-oxo-ent-kaur-16-en-19-oic acid ที่เป็นสาร known และแสดงฤทธิ์ต่อ P-388 cell line ด้วยค่า ED₅₀ 2.35 μ g/mL สารหลายตัวที่ known ออกฤทธิ์ใน anti-syncytium assay และ 15 β -acetoxy-ent-kaur-16-en-19-oic acid (xylopic acid) ที่เป็นสาร known ออกฤทธิ์ดีที่สุดด้วยค่า IC₅₀ 189.1 μ g/mL, EC₅₀ 30.8 mg/mL และ selectivity index = 6.1 ส่วนสาร known อีกตัวหนึ่งคือ ent-kaur-16-en-19-oic acid (ent-kaurenoic acid) ออกฤทธิ์ใน RT-assay (97.9% inhibition ที่ 200 μ g/mL IC₅₀ 34.1 μ g/mL)

ด้วยการร่วมมือกับ รศ. ลักษณ์ ทิมะคุณ ภาควิชาพยาธิชีววิทยา มหาวิทยาลัยมหิดล จึงได้ทำการทดสอบความเป็นพิษทางพันธุกรรม (genotoxic test) ของสารดัดแปลงคือ cleistanthoside A tetraacetate ซึ่งเตรียมจาก cleistanthoside A ที่แยกจากต้น *Phyllanthus taxodiifolius* (งานต่อยอดจากโครงการเก่า)


In this research project, several species of *Polyalthia* and *Phyllanthus* were investigated. The extracts, fractions and the pure isolated compounds from the plants of these two genera were evaluated for cytotoxic and anti-HIV-1 activities. Five species were selected for detailed studies, i. e. *Polyalthia crassa*, *Phyllanthus acutissima*, *Polyalthia glauca*, *Polyalthia cinnamomea* and *Polyalthia sclerophylla*.

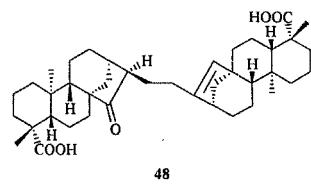
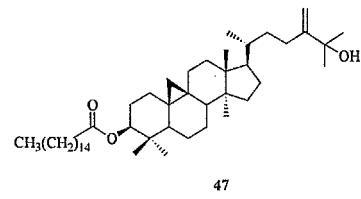
Twelve compounds, including five new compounds crassalactone A-E (8-12) together with seven known compounds, were isolated in pure forms from *Polyalthia crassa* (family Annonaceae). The new compounds 8, 9, 11 and 13 exhibited significant cytotoxic activities against a panel of six mammalian cancer cell lines. Compounds 9, 10 and the known aristolactam and goniopyrpyrone showed anti-HIV-1 activities with selectivity index ranged from 2.1-5.1.

The chemical structures of all pure isolated compounds were determined by spectroscopic method and the stereochemistries of compounds 8-11 were confirmed by chemical conversion and X-ray diffraction. However, the stereochemistry of compound 12 has not been proved. Compound 13, a modified compound, was prepared from 8 during the stereochemical study of 8.


The investigation of *Phyllanthus acutissima* led to the isolation of seven new compounds, triterpenes 15, 17, 18, 19 and 21, together with lignans 24 and 27. Apart from these new compounds, five known compounds, as well as the mixtures of β -sitosterol/stigmasterol and β -sitosterol β -D-glucopyranoside/stigmasterol β -D-glucopyranoside were also obtained from the same plants.

Compounds 15, 17 and 19 showed significant cytotoxic activities against a panel of six mammalian cancer cell lines. Compound 27 exhibited potent cytotoxic activity. Many isolated compounds were found active in the anti-synctium assay, but compound 19 provided highest selectivity index (SI >8.1,

IC_{50} 31.6 and EC_{50} <3.9). In the RT-assay, the known Taiwanin C was most active with 88.2 % inhibition at 200 μ g/mL.



The isolation of *Polyalthia glauca* yielded six new compounds, **29**, **30**, **32**, **33**, **36** and **37** together with several known compounds. The absolute configuration of compound **30** has not been proved. Compound **33** and the known 2,6-dimethoxybenzoquinone showed significant cytotoxic activities against a panel of six mammalian cancer cell lines. Compound **29** and the known 4-acetonyl-3,5-dimethoxy-*p*-quinol were active against HIV-1 in the anti-syncytium assay with selectivity index 3.8 and 1.9, respectively.

Four compounds were isolated from *Polyalthia cinnamomea*. Two compounds (**38** and **40**) are new. All isolated compounds were found inactive in the cytotoxic testing against a panel of six mammalian cancer cell line. In case of anti-HIV-1 activity, all compound were active in the anti-synцитium assay with selectivity index in the range of 2.0–3.3, while only the known 2α -acetoxyhardwickiic acid showed activity in the RT-assay (92.1% inhibition at 200 μ g/ mL).

The work on *Polyalthia sclerophylla* provided two new compounds, **47** and **48**, together with several known compounds. Most of the isolated compounds did not show cytotoxic activities, only the known 15-oxo-*ent*-kaur-16-en-19-oic acid exhibited the activity against P-388 cell line with ED_{50} 2.35 $\mu\text{g}/\text{mL}$. Many known compounds were found active in the anti-syncytium assay, but 15 β -acetoxy-*ent*-kaur-16-en-19-oic acid (xylopic acid) showed highest activity (IC_{50} 189.1 $\mu\text{g}/\text{mL}$, EC_{50} 30.8 $\mu\text{g}/\text{mL}$ and selectivity index = 6.1). Another known compound, *ent*-kaur-16-en-19-oic acid (*ent*-kaurenoic acid) was active in the RT-assay with 97.9% inhibition at 200 $\mu\text{g}/\text{mL}$, IC_{50} 34.1 $\mu\text{g}/\text{mL}$.

In collaboration with Associate Professor Lakana Himakoun from Department of Pathobiology Mahidol university, the genotoxic study of a modified compound, cleistanthoside A tetraacetate (prepared from cleistanthoside A which was isolated from *Phyllanthus taxodiifolius*), was also performed.