

บทคัดย่อ

โครงการวิจัยนี้เป็นงานวิจัยเบื้องต้นเพื่อค้นหาพีชสมุนไพรที่มีศักยภาพในการสกัดอินนูลินเพื่อใช้เป็นวัตถุเติมในอาหารสัตว์ โดยการทำงานวิจัยในครั้งนี้ครอบคลุมดังแต่การเก็บตัวอย่างพีช พัฒนาวิธีคัดกรองพีชในเบื้องต้น พัฒนาวิธีวิเคราะห์ปริมาณอินนูลินที่มีในพีช การทดสอบผลของสารสกัดอินนูลินจากพีชในแง่ของการเป็นสารพรีไบโอดิก รวมทั้งการหาสภาวะที่เหมาะสมในการเตรียมสารสกัดจากพีช เพื่อให้ได้ปริมาณอินนูลินที่ดีที่สุด ซึ่งข้อมูลที่ได้ในการวิจัยครั้งนี้เป็นข้อมูลในเบื้องต้นเพื่อใช้เป็นแนวทางในการเลือกพีชที่มีศักยภาพในประเทศไทยในการเป็นแหล่งของสารพรีไบโอดิกอินนูลิน ซึ่งจะเป็นประโยชน์สำหรับภาคอุตสาหกรรมและเกษตรกรรมต่อไป

ในการวิจัยนี้ได้ทำการคัดกรองพีชสมุนไพร 17 ชนิดในเบื้องต้นด้วยเทคนิคการตรวจลักษณะสารอินนูลินด้วยกล้องจุลทรรศน์โดยการย้อมเซลล์พีชด้วย α -naphthol ในออกanolแล้วตามด้วยการดัดฟูริก และการใช้เทคนิค TLC ในการตรวจสอบน้ำตาลฟрукโตสินสารสกัดพีชก่อนและหลังไอก็อโรลีส์ด้วยเอนไซมอินนูลินเอนส์ โดยใช้ silica gel GF254 เป็น stationary phase และใช้ acetone:water (9:1) เป็น mobile phase จานนี้ได้ทำการวิเคราะห์ปริมาณอินนูลินที่มีในสารสกัดจากพีชโดยใช้เทคนิค HPLC-RI เปรียบเทียบกับการใช้ปฏิกิริยาการเกิดสี พบร่วมพีชที่นำมาทดสอบมีอินนูลินอยู่ถึง 13 ชนิด โดยสารสกัดหยาบจากสามสิบให้ปริมาณอินนูลินที่สูงที่สุดถึง 5.50% yield เมื่อเทียบกับสารสกัดหยาบจากแก่นตะวันที่ให้อินนูลิน 4.98% yield และเมื่อทำการทดสอบกับเชื้อไพรีไบโอดิกและเชื้อก่อโรค พบรีชที่มีศักยภาพในแง่ของการเป็นพรีไบโอดิกอยู่หลายชนิด เช่น สามสิบ แก่นตะวัน มันแก้ว ฝรั่ง ห้อมหัวใหญ่ ห้อมแดง เป็นต้น นอกจากนี้จากการวิจัยพบว่าผลของอัตราส่วนตัวทำละลายต่อพีช การใช้อุลตราซาวด์ และวัสดุกรองต่างๆ มีผลต่อปริมาณอินนูลินในการเตรียมสารสกัดจากพีช โดยสารสกัดอินนูลินจากสามสิบจะมีปริมาณอินนูลินมากเมื่อใช้อัตราส่วนตัวทำละลายต่อพีชเป็น 1:2 ใช้อุลตราซาวด์ช่วยเป็นเวลา 15 นาที และการกรองผ่านสำลีให้ปริมาณอินนูลินดีที่สุด ขณะที่สารสกัดจะมีลักษณะดีและใส เมื่อกรองผ่านผงคาร์บอน

Abstract

This study aimed to preliminarily search for the inulin in Thai medicinal plants in order to provide a source of inulin as feed additive. The study covered sampling and collecting plants, developing criteria for plant screening, developing analytical procedures to determine amount of inulin in plants, testing of extracted inulin for prebiotics activities, and finding optimal good-yielding condition for extraction. The data from this study would provide a guide for selecting potential Thai medicinal plants as a source of prebiotics inulin, which would be valuable in agriculture and industry development.

Seventeen herbal plants were screened for the presence of inulin by microscopic α -naphthol-sulfuric acid staining. The TLC technique was used to examine a fructose sugar in extracts before and after hydrolysis with inulinase. The silica gel GF254 was used as stationary phase while acetone:water (9:1) was used as mobile phase. The amount of inulin in extracts was quantitatively determined by HPLC-RI and colorimetric method. The result showed that thirteen plants containing inulin. Crude extract from *Asparagus racemosus* Willd. had 5.50% yield of inulin, whereas *Hilanthus tuberosus* had 4.98% yield of inulin. The potential prebiotics activity was shown in a number of studied plants, such as *Asparagus racemosus* Willd, *Hilanthus tuberosu*, *Ipomoea batatas* L., *Psidium guajava*, *Allium cepa* L. cv group cepa, and *Allium cepa* L. cv group aggregatum. Interestingly, ratio of extract solvent to dry plants, ultrasound-assisted extraction, and filter material had effects on the amount of extracted inulin. For example, the highest amounts of inulin in *Asparagus racemosus* Willd. crude extract was obtained by using 1:2 of solvent and plants, ultrasonication for 15 minutes, and filtering extracts through cotton wool. Although, the appearance of crude extract was good and clear when the extract was filter through carbon.