

พอลิเมอร์สมรรถห่วงคลอริเนเตทพอลิเอธิลีนกับยางธรรมชาติในอัตราส่วน 80 ต่อ 20 ถูกเตรียมขึ้นโดยใช้ชิลิกาและดินขาวเป็นสารตัวเติมในปริมาณต่างๆ การศึกษากลไกการเสริมแรงของชิลิกาในพอลิเมอร์สมทำโดยอาศัยหลักการของรีโอลอยี ผลการทดลองแสดงให้เห็นว่าสมบัติที่ยุ่นหนีดของพอลิเมอร์สมขึ้นกับปริมาณของชิลิกาเป็นอย่างชัดเจน พฤติกรรมการสูญตัวของพอลิเมอร์สมได้รับการส่งเสริมจากการเติมชิลิกาดังกล่าว อันเป็นผลจากการเกิดอันตรรษิริยาที่สูง ระหว่างชิลิกากับคลอริเนเตทพอลิเอธิลีน และ/หรือ การลดลงของการดูดซับยาสูบผิวของชิลิกา การเกิดปรากฏการณ์เพนน์สามารถสังเกตได้อย่างชัดเจนในพอลิเมอร์สมที่มีปริมาณชิลิกาสูง ซึ่งปั่งบอกระถึงการเกิดพันธะข้ามเที่ยมผ่านทางอันตรรษิริยาทางกายภาพที่สามารถถูกทำลายได้ภายในความเครียดที่สูง กลไกการเสริมแรงดังกล่าวนี้สามารถยืนยันได้จากการทดลองลดความว่องไวของหมูไชลานอลบนผิวของชิลิกาด้วยสารคู่ควบไชเลน โดยสารคู่ควบไชเลนชนิด Si-69 สามารถลดการเกิดพันธะข้ามเที่ยมได้มีประสิทธิภาพมากกว่าสารคู่ควบไชเลนชนิด Si-264 นอกจากนี้ยังพบการกระจายตัวที่ไม่เท่ากันของชิลิกาในแต่ละเฟสของพอลิเมอร์สมที่มีการเติมชิลิกาในปริมาณที่สูง ซึ่งเกิดจากการอันตรรษิริยาที่สูงระหว่างชิลิกากับคลอริเนเตทพอลิเอธิลีน ดินขาวชนิดเกาลินสามารถส่งเสริมการสูญตัวของยางได้ในขณะที่ไม่ให้การเสริมแรงพอลิเมอร์สมอย่างมีนัยสำคัญ ทั้งนี้เนื่องมาจากปริมาณหมูไชลานอลและพื้นที่ผิวอนุภาคที่น้อยเมื่อเทียบกับชิลิกา ในกรณีของดินขาวขนาดอนุภาคนาโนพบว่า แนวโน้มของพฤติกรรมการสูญตัวและการไหลของพอลิเมอร์สมมีลักษณะคล้ายคลึงกับในกรณีของชิลิกา ปริมาณการเสริมแรงของนาโนคอมโพสิทขึ้นอยู่กับชนิดของสารอินทรีย์ที่ใช้ในการปรับสภาพดินขาวขนาดอนุภาคนาโนดังกล่าว อันตรรษิริยาเชิงกายภาพและเชิงเคมีต่างเป็นปัจจัยหลักที่ส่งผลต่อการเสริมแรงของดินขาวดังกล่าว

Blends of elastomeric chlorinated polyethylene (CPE) and natural rubber (NR) at blend composition ratio of 80/20 CPE/NR with various loadings of precipitated silica and kaolin clay were prepared. By the use of rheological approaches, a mechanism of silica reinforcement was proposed. Results obtained reveal that the viscoelastic behaviour of blends is influenced remarkably by loadings of silica. A cure promotion phenomenon is found as silica is loaded due probably to the strong silica-CPE interaction and/or a reduction in curative absorption on silica surfaces. A strong Payne effect is observed which is increased by a rise in silica loading, implying a formation of pseudo-crosslink via a physical interaction which could be disrupted at high strain of deformation. The proposed mechanism of silica reinforcement based on a formation of pseudo-crosslink is validated by the deactivation of silanol groups on silica surfaces using silane coupling agents. The Si-69 silane is found to be more effective in suppressing the pseudo-crosslink than Si-264. Also, there is an uneven silica distribution at high silica loading caused mainly by the strong silica-CPE interaction which could be suppressed by addition of silane coupling agents. As expected, Kaolin clay exhibits a slight cure promotion phenomenon with no significant reinforcement due to its low content of silanol groups with small surface area. In the case of organoclay filled blend nanocomposites, similar cure and rheological result trends to those of silica filled blends have been observed. Reinforcement magnitude of blend nanocomposites depends strongly on organic modification of nanoclays. Both chemical and physical interactions are responsible for the reinforcement.