CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This chapter was focused on the conclusion of the experimental results of spherical silica and alumina-silica composites supports on characteristics and catalytic properties of supported cobalt for CO₂ hydrogenation reaction which were described in section 6.1. Additionally, recommendations for further study are given in section 6.2.

6.1 Conclusions

- 1. The DTA/TG and XRD patterns indicated that thermal stability of γ-alumina can be enhanced when adding on the spherical silica. At various compositions of alumina-silica, increased amount of alumina exhibited a larger crystalline size of γ-alumina.
- 2. The alumina distribution on the Al₂O₃-SiO₂ composite supports prepared by deposition of Al₂O₃ particles on the spherical silica particle (SSP) using hydrolysis of aluminium isopropoxide, was uniform.
- 3. At high calcination temperature, increased amount of alumina obstructed the sintering effect.
- 4. The presence of alumina in Al₂O₃-SiO₂ composite supports caused in the decreased reducibilities of cobalt catalysts.
- 5. The amount of reduced cobalt metal surface atoms slightly decreased with increasing the amount of alumina present in the composite supports.
- 6. The alumina significantly enhanced the conversion and selectivity to methane of CO₂ hydrogenation, indicating the balance among dispersion

of alumina, reducibilities of silica, and pore diameter of alumina-silica composite supported cobalt catalysts.

6.2 Recommendations

- 1. The CO₂ hydrogenation performed at higher temperature should be further studied.
- 2. Besides Co, other metals such as Ni, Fe, Cu and etc should be further investigated with Al₂O₃-SiO₂ composites on the supports.
- 3. The Balance among dispersion, reducibilities, and pore diameter of composite supported metal catalysts should be further investigated.