

งานวิจัยขึ้นนี้เป็นการออกแบบตัวเร่งปฏิกิริยาที่มีโลหะหมุนนี้ และหมุนสองเป็นส่วน

ประกอบโดยใช้หลักการของ single-site catalysis ให้มีโครงสร้างอยู่ในรูป L_n MOR ligand เราได้ทำการสังเคราะห์ ligand โดยแบ่งเป็น 2 กลุ่มคือตามประจุ คือ ligand ที่เป็นกลางสำหรับโลหะหมุน (Li, Na, K) และ ligand ที่มีประจุเป็น -1 สำหรับโลหะหมุนสอง (Ca) การจับกันระหว่างโลหะหมุนนี้กับ ligand นั้นถูกโมเดลด้วยการคำนวณ Density Functional Theory (DFT) ด้วยโปรแกรม Gaussian 03 พบว่าสามารถจับกันได้ แต่เมื่อนำไปทำเป็นตัวเร่งปฏิกิริยาในการสังเคราะห์โพลิแลคไทด์ปรากฏว่าการใส่ ligand ลงในน้ำทำให้อัตราเร็วของปฏิกิริยาลดลงเนื่องมาจากความเกะกะของ ligand ที่ใส่ลงไป แต่เมื่อนำเอา alcohol ที่มากเกินพอกำลังไปในปฏิกิริยาด้วยพบว่าแทนที่จะเกิดโพลิแลคไทด์กลับได้ alkyl lactate และ alkyl lactylactate แทนซึ่งสารเหล่านี้สามารถนำมาทำเป็นตัวทำละลายที่เป็นมิตรกับสิ่งแวดล้อม (green solvents) ได้เนื่องจากมีความดันไออกต์ต่ำและไม่เป็นอันตราย แต่เมื่อนำเอา $Ca[N(SiMe_3)_2]_2 \cdot 2THF$ มาเป็นตัวเร่งปฏิกิริยาแทนโลหะหมุนนี้ปรากฏว่าสามารถสังเคราะห์ alkyl lactate ได้ภายใน 5 นาทีซึ่งรวดเร็วที่สุดเท่าที่เคยมีการรายงานมา นอกจากนี้เรายังได้เริ่มศึกษาสารประกอบหมุน 13 (Al) ด้วยโดยสามารถสังเคราะห์สารประกอบในรูป L_2AlCl ได้ซึ่งจะได้รายงานในภายหลัง

We have studied group 1 and 2 metal catalysts for lactide polymerization using the concept of single-site catalysis where the catalysts are in the form L_nMOR . The synthesized ligands are classified into 2 categories: neutral ligands for group 1 (Li, Na, K) metal complexes and uninegatively charged ligands for group 2 (Ca) metal complexes. The metal and ligand association was modeled using Density Functional Theory (DFT) calculation in Gaussian 03 package. The ligand was found to coordinate to the metals. However, their activities for lactide polymerization were inferior to the conditions without the added ligands, possibly due to the increasing steric hindrance imposed by the ligand. When excess alcohol was added to the polymerization reaction, unexpected alkyl lactate and alkyl lactylactate were formed. These compounds are useful as green solvents because they have low vapor pressure and low toxicity. When $Ca[N(SiMe_3)_2]_2 \cdot 2THF$ was used instead of the group 1 metal complex, only alkyl lactate was formed exclusively and rapidly in 5 min—the fastest rate reported to date. In addition, we have studied group 13 (Al) metal complexes. Complexes in the form L_2AlCl were synthesized and their results will be reported in due course.