

ปกรณ์ มหารักษ์ : การพัฒนาโปรแกรมคอมพิวเตอร์สำหรับการวิเคราะห์เสถียรภาพของลาดดิน เสริมกำลังด้วยวัสดุสังเคราะห์.(DEVELOPMENT OF COMPUTER PROGRAM FOR GEOSYNTHETICS REINFORCED SLOPE STABILITY ANALYSIS) อ. ทีปรีกษา : รศ.ดร. บุญชัย อุกฤษฎา, 100 หน้า

วิทยานิพนธ์นี้ศึกษาข้อมูลทางวิศวกรรมของวัสดุสังเคราะห์เสริมกำลัง และพัฒนาโปรแกรมคอมพิวเตอร์สำหรับการวิเคราะห์เสถียรภาพของลาดดินเสริมกำลังด้วยวัสดุสังเคราะห์ วิธีการวิเคราะห์เสถียรภาพใช้หลักการของวิธี สมดุลสุดขีดร่วมกับวิธีแบ่งชั้นดิน ได้แก่วิธี Fellenius, Bishop, Spencer และ Morgenstern-Price แรงดึงของวัสดุเสริมกำลังถูกนำเข้าไปในการคำนวณในวิธีแบ่งชั้นดินแบบทั่วไป โดยพิจารณาการกระจายแรงดึงของวัสดุเสริมกำลัง 2 แบบคือ 1)แบบคงที่ 2)แบบลดลงเชิงเส้น นอกจากนี้การคำนวณทิศทางแรงดึงของวัสดุเสริมกำลังภายใต้แรงดึงของวัสดุเสริมกำลัง 2 ทิศทางคือ ทิศทางขนานกับทิศทางการวางของวัสดุเสริมกำลัง และ ทิศทางสัมผัสถกับพื้นผิวบดตี การคำนวณแรงลัพท์ในแต่ละชั้นดิน ซึ่งเกิดจาก น้ำหนักดิน, แรงกระทำภายนอก, แรงเสื่อมแปร่เดินไห้ในแนวราบ และแรงดึงของวัสดุเสริมกำลัง ทำให้การคำนวณวิธีแบ่งชั้นดินที่มีวัสดุเสริมกำลัง เหมือนกับ การคำนวณวิธีแบ่งชั้นดินที่ไม่มีวัสดุเสริมกำลัง โปรแกรมสามารถคำนวณ ผ่านพื้นผิวบดตอย่างยั่งยืนโดยไม่ต้องคำนวณค่าอัตราส่วนความลับของวัสดุ แต่ต้องคำนวณค่าอัตราส่วนความลับของวัสดุที่ต้องคำนวณในแต่ละชั้นดิน ทั้งนี้เพื่อให้คำนวณได้แม่นยำและรวดเร็ว

โปรแกรมที่พัฒนาขึ้นถูกนำไปประยุกต์ในการวิเคราะห์ปัญหาเสถียรภาพจำนวนมาก ทั้งลาดดินไม่มีวัสดุเสริมกำลังและลาดดินมีวัสดุเสริมกำลัง เพื่อตรวจสอบความน่าเชื่อถือและความถูกต้องของส่วนการคำนวณ ผลการคำนวณค่าอัตราส่วนความปลดภัยของทุกปัญหา ยอดคลื่นอย่างมากกับค่าอัตราส่วนความปลดภัยจากเอกสารข้างต้น ผลลัพท์สำคัญจากการวิเคราะห์ลาดดินมีวัสดุเสริมกำลัง คือ กรณีการกระจายแรงดึงเป็นแบบลดลงเชิงเส้นและดินที่ฐานชั้นดินเป็นชนิดมีค่ามูนเดียดท่านประลิทิชผล ค่าอัตราส่วนความปลดภัยของแรงดึงมีทิศทางขนานกับทิศทางการวางของวัสดุ มีค่ามากกว่ากรณีของแรงดึงมีทิศทางสัมผัสถกับพื้นผิวบดตี ซึ่งเป็นผลตรงกันข้ามกับ กรณีการกระจายแรงดึงเป็นแบบคงที่และให้วิธีสมดุลโมเมนต์ทั้งหมดเพียงอย่างเดียวในการคำนวณค่าอัตราส่วนความปลดภัย คือ แรงดึงมีทิศทางขนาน จะได้ค่าอัตราส่วนความปลดภัยน้อยกว่ากรณี แรงดึงมีทิศทางสัมผัสถ

204369

4870363121 : MAJOR CIVIL ENGINEERING

KEY WORD: SLOPE STABILITY / REINFORCED SLOPE / METHOD OF SLICES / COMPUTER PROGRAM.

PAKORN MAHARAK : DEVELOPMENT OF COMPUTER PROGRAM FOR GEOSYNTHETICS REINFORCED SLOPE STABILITY ANALYSIS. THESIS ADVISOR : ASSOC. PROF. BOONCHAI UKRITCHON, Ph.D., 100 pp.

This thesis studied engineering aspects of geosynthetics materials and developed a computer program for analyzing geosynthetics-reinforced slope stability. The slope stability analysis used the concept of the limit equilibrium method with the methods of slice, namely the methods of Fellenius, Bishop, Spencer and Morgenstern-Price. Tensile forces of reinforcement were incorporated into those general methods of slices by considering two distributions of tensile force of reinforcement: 1) constant type; and 2) linear decrease type. In addition, two calculations of tensile force orientation were implemented into the program, where the direction of tensile force is parallel with the reinforcement alignment and is tangent to failure surface. Calculations of resultant forces of each slice arising from soil weight, external forces, pseudo seismic horizontal forces and reinforcement forces enabled calculations of method of slice with reinforcement to follow those of general method of slice without reinforcement. The program automatically searched the critical circular arc failure surface as well as general failure surface. In addition, the program could analyze failure mechanism of direct sliding along reinforcement for the case of general failure surface.

The developed program was applied to analyze various examples of non-reinforced and reinforced slope stability in order to check the validity and correctness of calculated modules. All results of computed factor of safety corresponded very well with those published in the literature. Major finding from analyzing examples reinforced slope was that for the case of linear decrease of tensile force distribution and soil at slice base has effective friction angle value, the factor of safety of the tensile force parallel with alignment is higher than that tangent to the failure surface. Such result is contrast to the constant tensile force distribution and calculating FS. by overall moment equilibrium equation only, where the parallel case is lower than the tangent case.