

การลดปัญหานมพิษทางเสียงซึ่งส่งผลกระทบต่อประชาชนที่อาศัยอยู่บริเวณริมทางยกระดับที่มีความเหมาะสมในทางปฏิบัติหรือที่นี่คือ การติดตั้งแผงกั้นเสียงริมทาง เพื่อลดระดับเสียงทั้งในและนอกเขตทาง ซึ่งหากสามารถออกแบบกั้นเสียงซึ่งใช้วัสดุเหลือทิ้งจากภาคการเกษตรและอุตสาหกรรมได้ จะเป็นการใช้ประโยชน์จากวัสดุเหลือทิ้ง อีกทั้งยังช่วยลดต้นทุนการผลิตหรือลดการนำเข้าของเทคโนโลยีจากต่างประเทศ วัสดุเหลือทิ้งที่ใช้ในการศึกษาครั้นี้ได้แก่ เถ้าแกลบบดละอียดซึ่งเหลือจากการเผาแกลบเป็นเชื้อเพลิงในการเผาอิฐ เถ้าลอยซึ่งได้จากโรงไฟฟ้าถ่านหินและน้ำทิ้งจากโรงงานฟอกเยื่อกระดาษ เถ้าแกลบและถ้าลอยจะถูกนำไปแทนที่ปูนซีเมนต์ร้อยละ 20 ในการผสมมอร์ต้าร์และทดลองใช้อัตราส่วนน้ำต่อวัสดุประสาน 0.5 และ 0.6 ส่วนน้ำทิ้งจากโรงงานฟอกเยื่อกระดาษใช้เป็นสารผสมเพิ่ม และลดปริมาณซีเมนต์ที่ใช้ในส่วนผสมลงร้อยละ 20 และ 25 และใช้อัตราส่วนน้ำต่อซีเมนต์ 0.35 การศึกษานี้ทดสอบคุณสมบัติต่างๆ ของวัสดุ ได้แก่ ความแข็งแรงของวัสดุ (กำลังรับแรงอัด กำลังรับแรงดึง กำลังรับแรงดัด และโมดูลัสยึดหยุ่นของมอร์ต้าร์) ความคงทนของวัสดุในการต้านทานต่อสภาพที่เป็นกรด และประสิทธิภาพในการลดTHONเสียงของตัวอย่างแผงกั้นเสียงขนาดกว้าง 2 เมตรและสูง 1 เมตร ซึ่งติดตั้งในห้องปฏิบัติการ (ทดสอบหาค่าสมประสิทธิ์การดูดกลืนเสียง และค่าการลดTHONเสียงระหว่างห้องและผู้คนของแผงกั้นเสียง) รวมทั้งตรวจวัดระดับเสียงเฉลี่ย 1 ชั่วโมง ณ สถานที่จริงบนทางยกระดับ จากผลการทดสอบพบว่าแผงกั้นเสียงที่ผลิตจากมอร์ต้าร์ซึ่งมีการแทนที่ปริมาณปูนซีเมนต์ด้วยถ้าลอย ร้อยละ 20 และมีอัตราส่วนน้ำต่อวัสดุประสาน 0.5 มีความแข็งแรงและความคงทนดีที่สุด ในขณะที่การทดสอบประสิทธิภาพของแผงกั้นเสียงภายในห้องปฏิบัติการที่ใช้วัสดุที่มีส่วนผสมแตกต่างกัน แต่มีความหนาเท่ากัน พบว่ามีความสามารถในการลดTHONเสียงระหว่างห้องและผู้คนในห้องที่มีความกว้าง 50 เมตร สูง 2 เมตร โดยติดตั้งบนทางยกระดับที่มีความสูง 10 เมตร จากพื้นดิน พบว่าสามารถลดระดับเสียงได้สูงสุด 7 dBA ที่ตำแหน่งห่างจากแนวกำแพงกั้นเสียง 1 เมตร และสูงจากพื้นดิน 10 เมตร โดยระหว่างการทดสอบในสถานที่จริง ได้พบปัญหาซึ่งไม่สามารถควบคุมได้คือ ผลกระทบจากการสะท้อนของเสียงให้ทางยกระดับซึ่งเป็นปัญหาสำคัญต่อการทดสอบเพื่อหาประสิทธิภาพของแผงกั้นเสียงบนทางยกระดับ

Installing noise barrier along the side of elevated roadway is one of the most practical methods to remediate the noise pollution affecting residence next to elevated roadway. There are many benefits if the noise barrier can be made of waste materials because the waste materials would be eliminated while the cost of making noise barriers could also be reduced. Waste materials considered in this study are rice husk ash (RHA) from burning bricks using rice husk as fuel, fly ash (FA) left over from coal power plant, and waste water from paper factory called black liquor. RHA and FA are pozzolanic materials, which can be used to replace cement by 20% in mixing mortar. Trial mortar mixes considered water-to-binder ratio of 0.5 and 0.6. Black liquor can be used as water-reducing admixture in mixing mortar. In this case, cement was reduced by 20 and 25% and water-to-cement ratio of 0.35 was used. Six mortar mixes were tested regarding strength and acid resistance. It was found that the mortar with 20% of cement replaced by FA and water-to-binder ratio of 0.5 has the best strength and resistance to acid. Noise barrier panels of 2m wide and 1m high using different mortar mixes—all with the same thickness—were tested in laboratory for sound absorption and transmission loss. It was found that all materials have similar sound properties, all having transmission loss more than 25 dBA, which is acceptable for noise barrier panels. Sound protection performance of a 50m long and 2m high noise barrier was also tested in-situ on an elevated roadway. It was found that this barrier can reduced the noise by as much as 7 dBA at a distance of 1m away from the barrier on the outside of roadway and at the same elevation of roadway (10m above ground) as compared to similar location without a barrier. During the field testing, reflection of sound under the elevated roadway was a major problem, which is difficult to control, and this effect reduces performance of the noise barrier.