

การวิเคราะห์ปริมาณทั้งหมดของโลหะหนักหรือแร่ธาตุในตัวอย่างมีประโยชน์จำกัด เพราะธาตุต่างๆ อาจดำรงอยู่ได้ในรูปฟอร์มที่ต่างกันซึ่งมีความสามารถในการเคลื่อนตัว การคุณซึ่งหรือการนำไปใช้ได้ของโลหะหนักหรือแร่ธาตุนั้นๆ ที่แตกต่างกัน ทำให้มีผลกระทบของธาตุต่างๆ ต่อสิ่งแวดล้อมและชีวิตของมนุษย์ที่ต่างกันด้วย งานวิจัยนี้ได้ประยุกต์ใช้วิธีใหม่ในการประเมินผลกระทบของการปนเปื้อนของโลหะหนักจากกิจกรรมอุตสาหกรรมหลอมโลหะและอุตสาหกรรมการกลุ่งแร่ โดยใช้ระบบการสกัดเป็นลำดับขั้นแบบไอลต์ต่อเนื่องที่พัฒนาขึ้นใหม่ ทั้งนี้ได้เลือกศึกษากรณีการปนเปื้อนจากโรงงานที่มีปัญหาในประเทศไทย คือปัญหาจากการหลอมโลหะตะกั่วจากแบตเตอรี่เก่า และปัญหาจากการกลุ่งโลหะสังกะสีที่ทำให้เกิดการปนเปื้อนของแคเดเมียม โดยได้ศึกษาถึงความสามารถในการเคลื่อนตัวของตะกั่วและแคเดเมียมที่ปนเปื้อนอยู่ในดิน ดินตะกอนและอากาศในบริเวณใกล้ๆ กับโรงงานดังกล่าว นอกเหนือจากนี้ ได้ศึกษาถึงรูปฟอร์มของตะกรันเหล็กที่เกาะอยู่ในท่อน้ำส่งแก๊สธรรมชาติ สำหรับงานวิจัยอีกส่วนหนึ่ง ได้ทำการพัฒนาวิธีวิเคราะห์แบบไอลต์ต่อเนื่องเพื่อศึกษาการคุณซึ่งหรือการนำไปใช้ได้ของแร่ธาตุในอาหาร ระบบที่พัฒนา ขึ้นนี้เป็นการจำลองหลอดเกล้าให้เสมือนเป็นระบบการย่อยในกระเพาะอาหารและการคุณซึ่งสารอาหารในลำไส้เล็ก โดยอาศัยวิธีแบบแบบที่ในการจำลองการย่อยในกระเพาะอาหาร และใช้ระบบการซึมผ่าน เยื่อบางแบบไอลต์ต่อเนื่อง (continuous-flow dialysis, CFD) ในการจำลองการคุณซึ่งสารอาหารในลำไส้เล็ก ด้วยระบบ CFD ทำให้สามารถเก็บสารละลายตัวอย่างที่ซึมผ่านเยื่อบางของกมาเพื่อการวิเคราะห์ปริมาณแร่ธาตุโดยใช้หน่วยตรวจวัดประเภทต่างๆ ได้ เช่น การวัดการคุณกลีนแสงโดยอาศัยเปลวไฟและความร้อน การวัดการคายแสงของธาตุ โดยอาศัยพลาสมานีนแหล่งพลังงาน ซึ่งได้ทำการศึกษาถึงวิธีการเชื่อมต่อระบบ CFD ที่พัฒนาขึ้นกับหน่วยตรวจวัดประเภทต่างๆ ทำการประเมินวิธีที่พัฒนาขึ้นใหม่เปรียบเทียบกับวิธีแบบแบบที่ใช้กันอยู่เดิม ในด้านความแม่นยำ ความถูกต้อง และประสิทธิภาพ เพื่อประยุกต์ใช้ในการประเมินค่าการคุณซึ่งได้ของแร่ธาตุในอาหาร และศึกษาปัจจัยที่มีผลต่อค่าการคุณซึ่งได้

The determination of information on total concentration of heavy metals or minerals in samples has limited use because elements can exist in different chemical forms with varying mobility and availability to living organisms and thus can have varying impacts on environment and human life. Chemical speciation is therefore necessary. In this research, a newly developed continuous-flow sequential extraction was applied to assess the impact of heavy metals contamination caused by metal smelting and mining activities. Two major case studies were investigated including lead contamination in soil and air collected from the area nearby lead smelting industry and cadmium contamination in soil and sediment collected from the area in the vicinity of zinc mining industry. In addition, iron speciation in the natural gas pipe line was examined. Further to a different topic, a novel method for the determination of *in vitro* mineral bioavailability, or mineral bioaccessibility, was developed based on a simulated gastric digestion in a batch system followed by a continuous-flow intestinal digestion. The simulated intestinal digestion was performed in a dialysis bag placed inside a channel in a flowing stream of dialyzing solution. The continuous flow dialysis in the intestinal digestion step enables dialysable components to be continuously removed for element detection by various detection methods, including flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma optical emission spectrometry (ICP-OES). The interfacing between the continuous-flow dialysis system and the detection method was carefully optimized. The precision, accuracy and efficiency of the developed method were compared with the conventional batch analysis. The developed system was applied to examine factors affecting dialyzability, or the mineral bioavailability of food.