

206480

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาสถาปัตยกรรมของธรรมชาติที่สิงมีชีวิตนิยมนำไปใช้งาน 2 ชนิด ได้แก่ โปรตีนเจาเมมเบรนประเภท Bt และเมทัลโลพอร์ไฟรินโดยหวังว่าองค์ความรู้ที่สั่งเคราะห์ขึ้นมา จากร้านวิจัยนี้จะนำไปสู่การสร้างเทคโนโลยีที่อาศัยการเรียนรู้จากธรรมชาติ ได้ศึกษาวิธีการสร้างฟิล์มบาง โมเลกุลจากโปรตีนเจาเมมเบรนและเมทัลโลพอร์ไฟริน โดยใช้วิธีการแลงเมียร์-บลีดอตเจ็ตต์และการเคลือบ ปั๊นตามลำดับ ด้วยการใช้วิธีการทางนาโนศาสตร์ได้นำมาซึ่งความเข้าใจในเรื่องความเป็นอยู่ของโมเลกุล ในชั้นฟิล์มบาง กลไกการทำงานในระดับนาโนของโมเลกุลเจาเมมเบรน จนนำมาสู่ข้อสรุปที่ว่าโปรตีนมี การเปลี่ยนแปลงรูปร่างก่อนและในขณะเข้าทำการเจาเมมเบรนจะทำให้เกิดรอยร้าว องค์ความรู้ดังกล่าว อาจนำไปสู่การออกแบบโมเลกุลเจาเมมเบรนที่ทำหน้าที่เฉพาะด้าน เช่น การนำส่งยาและสารอาหาร เข้าสู่เซลล์ ในส่วนของสถาปัตยกรรมฟิล์มบางโมเลกุลของเมทัลโลพอร์ไฟรินนั้น ได้เข้าใจลักษณะการ จัดเรียงตัวของโมเลกุลในชั้นฟิล์ม ได้พารามิเตอร์ที่เหมาะสมในการเตรียมฟิล์มบางเมทัลโลพอร์ไฟริน เพื่อเป็นอุปกรณ์เซ็นเซอร์ตรวจวัดไอระเหยเคมี พบว่าการปรับเปลี่ยนโลหะตระกูลของโมเลกุลพอร์ไฟรินทำให้เป็นเซ็นเซอร์ที่มีความไวต่อกลิ่นแตกต่างกัน ได้ประกอบอุปกรณ์จมูกอิเล็กทรอนิกส์บน พื้นฐานของการตรวจวัดการดูดกลืนแสง และประยุกต์ใช้ตรวจวิเคราะห์สชาติของเครื่องดื่มประเภทอัล กอฮอล์ เช่น ไวน์ เมียร์ และวิสกี้ ผลงานดังกล่าวสามารถปรับปรุงเพื่อนำไปประยุกต์ใช้ในอุตสาหกรรม อาหารและเครื่องดื่มได้

206480

This research project was aimed to study two molecular architectures frequently found in nature, namely membrane-penetrating protein Bt and metallo-porphyrin. It is hoped that the understanding of these molecular architectures will lead to development of bio-inspired technology. Fabrication of molecular thin-films of membrane-penetrating protein and metallo-porphyrin using Langmuir-Blodgett and spin-coating, respectively, was performed. Based on nanoscale tools, the principles of thin-film structure and pore-forming mechanism of membrane-penetrating protein was investigated. It was found that the protein has gone to a course of structural transformation prior to and during the penetration process. This understanding may lead to a design of functional membrane-penetrating protein for nutrient and drug delivery into cell. The study on metallo-porphyrins yields a detailed insight into the thin-film structure. Optimized parameters for preparation of a good film as sensing materials in chemical sensor were also obtained. Variation of central metal in the porphyrin rings effect the sensitivity of the film to various chemical vapors. We have invented a laboratory prototype of electronic nose based on optical absorption. The prototype has been tested on the analysis of various alcoholic beverages such as wines, beers and whiskeys. Future improvement of this prototype will be beneficial for the food and beverage industry.