

ยางพาราเป็นวัตถุคุณของการผลิตเครื่องอุปโภคบริโภคที่สำคัญในประเทศไทย เป็นหนึ่งในประเทศผู้นำในการผลิตและส่งออกยางคุณภาพเพื่อจำหน่ายยังต่างประเทศคุณภาพดีที่สูงในแต่ละปี สำหรับการผลิตยางสำเร็จรูปจีนใช้ภายในประเทศโดยทั่วไปพบว่ามียางคุณภาพดีได้จากการการรีดยางจะมีเนื้อยางอยู่น้อย คือ ประมาณ 35% ซึ่งไม่เหมาะสมก่อการแปรรูปเป็นผลิตภัณฑ์ต่างๆ ในทันที เพื่อให้เหมาะสมต่อการแปรรูปน้ำยางมีเนื้อยางประมาณ 60-70% ในทางอุตสาหกรรมจะการปรับปรุงคุณภาพน้ำยางเพื่อคัดแยกนำส่วนหนึ่งออกจากเนื้อยาง โดยใช้เครื่องเซนทริฟิวท์มีการทำงานยุ่งยากอีกทั้งยังมีราคาแพงซึ่งทำให้ต้นทุนในการผลิตสูง งานวิจัยนี้จึงเลือกศึกษาไฮโดรไซโคลนที่มีหลักการทำงานใกล้เคียงกันแต่จำกต่อการใช้งานและมีราคาถูกซึ่งอาจส่งผลให้ต้นทุนการผลิตลดลงอย่างมาก

ไฮโดรไซโคลนสามารถคัดแยกอนุภาคยางโดยอาศัยสานของแรงเหวี่ยงหนีศูนย์กลางเป็นสำคัญ สำหรับงานวิจัยนี้ใช้ไฮโดรไซโคลนที่ได้รับการคำนวณออกแบบขนาด 8 mm และ 10 mm ปัจจัยด้านสภาวะการทำงานที่มีผลต่อประสิทธิภาพการทำงานของไฮโดรไซโคลนที่ได้รับการศึกษาได้แก่ ความเข้มข้นตั้งคันของสารละลายน้ำยางและความดันของการป้อนเข้า ดังนั้นความเข้มข้นน้ำยางที่ทดลองคือ 0.05% ถึง 0.75% โดยน้ำหนักและความดันป้อนเข้าอยู่ในช่วง 2 ถึง 7 kg/cm²

การทดลองที่ความเข้มข้นต่ำ 0.05% ขนาดการคัดแยกอนุภาคเกิดขึ้นโดยมีนัยสำคัญกล่าวคือ ช่วงความแตกต่างเฉลี่ยของขนาดอนุภาคมีค่าประมาณ 120 nm มากกว่าที่ความเข้มข้นสูง 0.25% และ 0.75% ซึ่งอาจอธิบายได้ว่าผลศาสตร์ของอนุภาคมีความแตกต่างกันระหว่างการไฮโลแบบเจือจางที่ความเข้มข้น 0.05% กับการไฮโลแบบหนาแน่นที่ความหนาแน่น 0.75% เมื่อทดลองที่ความดันคงที่ที่ 7 kg/cm² การคัดแยกขนาดมีประสิทธิภาพดีที่สุดที่ความเข้มข้นประมาณ 0.2% ซึ่งจะสามารถให้ผลการคัดแยกขนาดอนุภาคได้ดีที่สุด ช่วงขนาดอนุภาคที่คัดแยกได้ประมาณ 200 – 300 nm แสดงว่าสภาวะที่เหมาะสมต่อการคัดแยกอนุภาคยางต้องพิจารณาร่วมกันทั้งความเข้มข้นตั้งคันและความดันป้อนเข้า ไฮโดรไซโคลน จากการวิเคราะห์ความเข้มข้นตัวอย่างน้ำยางที่ทางออกด้านล่างและด้านบน พบว่าที่ความเข้มข้นป้อนเข้าไฮโดรไซโคลน 0.05% จะสังเกตเห็นความเข้มข้นที่แตกต่างกันระหว่างตัวอย่างที่เก็บ ในขณะที่ค่าความแตกต่างนี้ไม่มีนัยสำคัญเมื่อทดลองที่ความเข้มข้นที่สูงกว่า แต่ความเข้มข้นที่ต่ำนี้ไม่เพียงพอที่จะก่อให้เกิดความเข้มข้นที่ต้องการคือ 60 – 70% จากการผ่านระบบไฮโดรไซโคลน เพียงรอบเดียว

เพื่อให้เหมาะสมต่อการใช้งานในเชิงอุตสาหกรรม ควรปรับปรุงพัฒนาระบบไฮโดรไซโคลน เพื่อให้สามารถคัดแยกอนุภาคได้ด้วยประสิทธิภาพที่สูง โดยการเพิ่มขนาดอนุภาค เพิ่มจำนวนและการจัดเรียงชุดไฮโดรไซโคลน และการเพิ่มรอบของการป้อนเข้าขึ้น ทั้งนี้จะทำให้ขนาดการคัดแยกดีขึ้น และได้ปริมาณการคัดแยกที่อัตราสูง

Nowadays, natural rubber is an important raw material for producing various kinds of product. Thailand is one leading country in cultivating and annual high-value exporting rubber. Regarding the rubber making, the rubber slurry should contain rubber particle at least about 60 % – 70% by weight; but naturally natural rubber cultivated approximately posses only 35% which is not proper to be utilized immediately. For the industry, centrifuge is employed in order to improve the rubber quality, namely, the solid content. However, the operation of centrifuge is rather difficult and expensive and that means a high cost for the industry. Thus, the present research aims to apply a simpler but efficient apparatus so called a hydrocyclone. The principle of hydrocyclone is simple and it is very cheap compared to the centrifuge and suitable for SMEs.

The hydrocyclone classifies the particle size by mean of the induced centrifugal force. For this study, the hydrocyclone with a diameter of 8 mm and 10 mm were used. The key factors influencing the performance of the hydrocyclone are the concentration of rubber slurry and the feed pressure. The concentration was varied from 0.05% w to 0.75% w, and the feed pressure was varied from 2 to 7 kg/cm².

From the experiments at low concentration 0.05% w, the particle size separation is significant i.e., the averaged range of size separation is roughly 120 nm, which is higher than that of 0.25% w and 0.75% w concentrations. The reason might be because of the different dynamics of the rubber particle i.e., the diluted phase and dense phase flows. On the contrary, at the feed pressure of 7 kg/cm², the best performance occurred at the concentration of 0.2% w. The range of separation is approximately 200 – 300 nm. Therefore, in order to identify the optimum operating condition it must consider not only the slurry concentration but also the feed pressure of the hydrocyclone. From the resulted concentration of the slurry collected from the overflow and the underflow, with the initial 0.05% w concentration, the desired concentration value of 60 – 70% seems could not be achieved with only a single pass operation.

As a consequence, in order to suit the industrial application, the performance of the hydrocyclone system should be improved either by increasing the particle size, increasing the number of hydrocyclone with a proper arrangement, or increasing the number of passing. Thus, the size separation should be improved and the volume of separation should also be increased.